学年

教科

質問の種類

数学 高校生

ウ~よく分かりません。教えてください🙏

数学 A 図形の性質 51★★ 黒板に右図のような三角形がかいてあり AD:DB=3:2 CE:ED=t:1-t (0<t<1) とする。 <目標解答時間18分〉 A D E とする。 太郎:t=- として辺の比を考えてみよう。 花子 このとき, CF AF はどうなるかな。 太郎 2 直線 AE, BC の交点をG とすると, BG: CG はどうだろう。 B GA C (1) 花子さんと太郎さんはtの値と点E,F,Gの位 置などに関して話している。 メネラウスの定理を用いると CF カ = AF キ である。 また、チェバの定理を クケ BG (i) DF // BC の場合を考える。 用いると, CG コ である。 したがって, 直線ABと直線 FGはサ 花子: 線分 DF と辺BCが平行になるときのtの値を求めてみよう。 サ 太郎: 平行線の性質を利用することができるね。 花子 このとき, ABCE と △ABCの面積比はどうなるのかな。 | の解答群 平行である ①辺ABのAの側の延長上で交わる ② 辺ABのBの側の延長上で交わる AD 3 であることに着目すると, 線分 DF と辺BC が平行になるのは AB (2)BC=ABとして,点EがABCの内心になる場合を考えてみよう。 ア t= のときである。 このとき, BCE の面積は, △ABCの面積の イ シ (i) このとき,t= であり, AC BC == である。 ウ ス ソ 倍である。 さらに, △BCE と AEF の面積の大小を比べると オ I オ の解答群 △BCEの面積と△AEFの面積は等しい ① △BCE の面積の方が AEF の面積より大きい ② △BCE の面積の方が AEF の面積より小さい -96- (次ページに続く。) シ (ii) t= ス のとき,三つの角∠AEB, ∠BEC, ∠CEA のうち、最も大きい 角はタ である。 タ の解答群 ∠AEB ① ∠BEC ZCEA -97-

回答募集中 回答数: 0
1/500