学年

教科

質問の種類

数学 高校生

赤い線で引いた部分の理由がわかりません。 教えてください

1 6 不等式の証明 るようにしたい。 2 (相加平均) (相乗平均) の等号成立条件 a>0,6> 0 のとき a+b ≧√ab 等号は a=b のとき成り立つ。 2 この大小関係を上手に使うと不等式が容易に証明できることがあるが,等号成立条件 に注意しないと,うまくいかないことがある。次の2つの例を見てみよう。 なお,a>0,60 とする 例1 (1+2/2)(1+号)≧4の証明 (相加平均) ≧ (相乗平均) により b 1+ ≧2 a b 基本例題 30 (2)の不等式 ≧9 の証明 [例2](a+1/2)(6+1/2) 2 (相加平均) ≧ (相乗平均) により a ... ≧2. a …② 2 at/2=2√//...③.6+/1/22√ 4b ≥2A (4) a 辺々掛けて(1+1/2)(1+号) ≧4 B) に対し b ④辺々掛けて (a+1/6)(6+1/2)=8 例1の証明はうまくいったのに,例2ではうまくいかない。 この違いはどこにある のだろうか? その理由は, 等号成立条件にある。 例1の①②の等号はともにα=bのときに成り立つから,不等式 A の等号もa=b のときに成り立つ。 よって、証明もうまくいったのである。 一方,例2 で, ③の等号は αb=1のときに成り立つのに対し, ④の等号は ab=4の ときに成り立つが, ab=1とαb = 4 を同時に満たす正の数α, 6 は存在しない。 よって, Bは不等式としては正しいが,等号が成り立つ (=8となる)ことはない。

未解決 回答数: 1
数学 高校生

背理法による証明についての問題です 写真に赤くマークしてあるところについて、なぜ‪√‬5=r-7の形にする必要があるのか分からないため、教えてほしいです。 また、‪√‬5+‪√‬7=rの形のまま証明を進めていくのはダメなのかということも教えてほしいです。

106 基本 例題 61 背理法による証明 1000 7 が無理数であることを用いて, 5 + √7 は無理数であることを証明せよ、 指針無理数である (=有理数でない)ことを直接示すのは困難。 そこで,証明しようとする事柄が成り立たないと仮定して、 矛盾を導き, その事柄が成り立つことを証明する方法, すなわち 背理法で証明する。 実数 p.102 基本 無理数 有理数 直接がだめなら間接で 背理法 CHART 背理法 「でない」,「少なくとも1つ」 の証明に有効 +√7は実数であり √5+√7 が無理数でないと仮定する。 このとき√5+√7 は有理数であるから, rを有理数とし て√5+√7=rとおくと 5=-7の倍数でない」 両辺を2乗して ゆえに ¥0であるから 5=x²-2√7r+7 2√7=2+2 √√√7 = r²+2 2r ...... r2+2,2は有理数であるから,①の右辺も有理数であ 無理数でないと仮定し いるから,有理数であ 2乗して,5を消す (*) 有理数の和・差 は有理数である。 38=d +3=p [1] (1+1)(1+8)=do (*) よって①から√7 は有理数となり 7 が無理数である ことに矛盾する。 縁ではない S+++8)=(S+SE)(1+8) したがって, 5+√7 は無理数である。 矛盾が生じたから 1)+1 √5+√7が無理数 ない」が誤りだった 3+4+)は整数である(+)かる。 [1][2]により、対 この仮定,すなわち, したがって、もとの命も真である 背理法による証明と対偶による証明の違い 目 30+=+= [] 命題pg について、 背理法では 「pであって」でない」 (命題が成り立たない)とし 討 盾を導くが,結論の 「g でない」に対する矛盾でも、仮定の 「である」 に対する矛盾 どちらでもよい。 後者の場合,「刀」つまり対偶が真であることを示したことに このように考えると, 背理法による証明と対偶による証明は似ているように感じられ 本質的には異なるものである。 対偶による証明は引 る段階で道

解決済み 回答数: 1
1/1000