学年

教科

質問の種類

数学 高校生

数Cの複素数平面の問題の中の数列の内容です。 α⁵=1⇔(α-1)(α⁴+α³+α²+α+1)=0と下の写真の赤線部に書いてあって、その写真の赤四角部にどうやってこの式を導くのか書かれているのですが、数列の和の公式に代入したあとの式変形が分からないので教えて欲しいです。

30 重要 1071の乗根の利用 複素数α (α1) を1の5乗根とする。 (1)+α+1+1=0であることを示せ a (2)(1) を利用して,t=α+αは1+t-1=0を満たすことを示せ。 2 (3) (2) を利用して、 COS の値を求めよ。 00000 ((1)~(3) 金沢大) (4) a=cos/-/2x+isin 2/2 とするとき, (1-2) (1-4) (1-4) (1-α^)=5であ ることを示せ。 指針 (1) αは1の5乗根⇔=1⇔ (a-1)(^+α+α+α+1)=0 (2)g=1より|a|=1 すなわち αa=1であるから, かくれた条件α = ●基本105 1 a を利用。 1/23aisin 2/23 とすると,は1の5乗根の1つ。t=q+αを考え,(2)の (3) a=cos 5 結果を利用する。 (4)=1 を利用して, (k=1,2,3,4,5)が方程式 28=1の異なる5個の解であ ることを示す。これが示されるとき,z-1=(z-a)(z-a2)(za)(z-a^)(2-2) が成り立つことを利用する。 (1-2) (1-2) (1-2) (1-α)に似た形。 ある。 ここで, 次方程 25-1= N と因数 両辺に 別解 重要 重要 樹 1の (1) α = 1 から (α-1) (α^+α+α2+α+1)=0 a5-1=0 解答 α≠1 であるから α+α3+α2+a+1=0 一般に 両辺を ^ (0) で割ると2+α+1+1 1 a + Q2 = 0 5) とした (2) α5=1から |a|5=1 JT よって |a|=1 ゆえに|a=1 aiai+ 800 a すなわち aa=1 よって a = 1 S a 200 2"-1 =(2-1) (2'''+27-2 +... +1 ) [nは自然数] が成り立 つ。この恒等式は,初項 1,公比2,頂数nの等比 数列の和を考えることで 導かれる。 数 2° a

解決済み 回答数: 1
数学 高校生

数Cの複素数平面の問題です。(1)では場合分けをしなかったのに(2)では場合分けをする理由が分からないので教えて欲しいです。

515 重要 例 96 複素数の極形式 (2) ****** 偏角の範囲を考える ①①①①① 次の複素数を極形式で表せ。 ただし, 偏角0 は 002 とする。 (1) 指針 cosa+isina (0<α<z) (2) sina+icosa (0≦x<2π) 基本 95 既に極形式で表されているように見えるが, (cos+isin●) の形ではないから極形 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cos0 を利用。 更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2)実部の sin を cos に, 虚部の Cos を sin にする必要があるから, COS (一)=sine, sin(10) 0 =cose を利用する。 また、本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと に注意。特に(2)では,αの値によって場合分けが必要となる。 3章 138 複素数の極形式と乗法、除法 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は 解答 また cos(b)=-coso sin(π-0)=sin O √(-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) SI...... 1 <<πより,<<πであるから,①は求める極偏角の条件を満たすかど 形式である。 (2)絶対値は また ここで TC √(sina)²+(cosα)²=1 (+1-31 32 sinaticosa=cos(a)+isin(カーム) 0≦a≦のとき,nus であるから、求め る極形式は sinaticosa=cos π <α <2のとき 2 うか確認する。 cos(1-0)=sino sin(-)-cos 0 D 2 10≦x<2πから -as. ゆえに、αの値の範囲に (-a)+isin(-a)+ 180 よって場合分け。 5-2 232 V <<2のとき、偏 TC -a<0 2 π (各辺に2を加えると, --α<2であり 2 cos(-a)-cos(-a). 5 0 2 COS 2 sin(-)-sin(27) 10)805) 2sin(+2nx)=sin◆ 角が0以上 2 未満の範 囲に含まれていないから、 偏角に2を加えて調整 する。 なお cos( +2nx)=cos よって、 求める極形式は sina+icos a=cos(-a)+isin(-a) [n は整数 ] so 次の複素数を極形式で表せ。ただし、偏角0は002とする。求めよ。

解決済み 回答数: 1
1/81