学年

教科

質問の種類

数学 高校生

なぜ弦の長さを2lと置くのですか?

解答 円 ②の中心 (0, 0) 直線 ①の距離は, |2| √2+(-1) |2| 2 √55 == 求める弦の長さを2ℓ とすると,円の 半径が22より Think 例題 89 弦の長さ(1) **** 直線 y=2x+2 ① が円 x+y'=8......② によって切り取られて できる弦の長さを求めよ. 考え方 図に描いて考える. 円の中心と弦の距離を求めて, 三平方の定理を利用する. y=2x+2 より 2x-y+2=0 2ℓ とおくのがポイ ント ay 2√2 2√2 2√2 M €² + (√²²)²= (2√2)² 2 x 8= (22) 2 V ME) 36 + 三平方の定理 5 lo より l= =6√5 5 よって、 弦の長さ 2ℓ は, 12/5 5 (別解) ①を②に代入して, x2+(2x+2)2=8 YA 求める長さは2ℓで あることを忘れずに、 解と係数の関係を利 (3,23+2)用する解法 5x2+8x-4=0 ・③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (3,2β+2) とす ると,,βは2次方程式 ③ (a,2a+2) E) ふん」の2つの解だから,解と係数の関係より, ちょう 8 α+B=B=14 4 5 長さを l とすると, x Bax²+ bx+c=0 0) 2つの解をα βと すると (E)-(a+B=-- l°=(β-α)+{(2β+2)-(2α+2)}=5(β-α)2 (3-α)a= a aẞ= 55のときだす =5((a+3)-4aß)=5(-)-4()} 2 144 三平方の定理 よって、l>0より、弦の長さは, 12/5 Focus I+ awo+m 弦の長さの問題は、円の中心から弦に垂線を引き、 三平方の定理を利用する D>m> l²+d²=r² 接点の直

未解決 回答数: 1
数学 高校生

マーカー部分はなぜこのように置けるんですか?

3章 図形と方程式 例題 85 円の方程式(2) 次の円の方程式を求めよ. (1) 点 (1,2)を通り, x軸とy 軸の両方に接する円 **** (2)(1,2)を通り、x軸に接し、中心が直線 y=2x-1 上にある円 見方 中心の座標や半径を文字でおいて, 与えられた条件にあてはめる. 答 (1)半径をr (r>0) とおいて, 中心の座標をを用いて表す. (2) 中心が直線 y=2x-1 上にあることから,中心のx座標をα とすると, y 座標は 2a-1 とおける.また, x軸に接するから, (円の半径) = | (中心のy座標) | である. (1) 半径をr (r>0) とおく. 条件より、円の中心は第2象限にあり,両座標 軸に接するから,中心の座標は (-r, r) とおけ YA 第2象限 (-ray) 接する る. この点と点 (1,2)の距離がであるから, YA 接する より、 {-r-(-1)}+(r-2)²=r r2-6r+5=0 (r-1)(r-5)=0 r=1.5 r=1 のとき, 中心 (1,1) =5のとき, 中心 (55) よって, (x+1)+(y-1)'=1 (x+5)'+(y-5)²=25 5 -10 x (2)円の中心が直線 y=2x-1 上にあるから,円 の中心の座標は, (a,2a-1) とおける. また,x軸に接するから、 求める円の方程式は、 (x-a)+{y-(2a-1)}=|2a-1|_ …………① 円 ① は点 (1,2)を通るから, (1-a)+{2-(2a-1)}=|2a-1|2 整理すると, a²-10a +9=0 S 0 「第2象限の点(-1,2) を通る」, 「x軸, y 軸と 接する」ことから, 半径 をとおくと,円の方程 式は, (x+r)+(y-r)²=r 図のように,2つの円 が考えられる. x 軸に接するから, 半径は |2a-1| |2a-1|=(2a-1)2 (a-1)(a-9)=0 a=1, a=9 よって、 ①より a=1のとき, (x-1)+(y-1)=1 939 a=9 のとき (x−9)²+(y—17)²=289

解決済み 回答数: 1
1/136