学年

教科

質問の種類

数学 高校生

1枚目の写真の青い丸で囲っている問題のツについての質問です。2.3枚目の写真のように計算したのですが答えが合いませんでした。どこが違うか教えてください。回答よろしくお願いします。(答えは赤丸のところです。)

362023年度 数学(解答) <解説> <複素数の表す図形, 整数問題≫ laz+1 ►(1) z+α 慶應義塾大 - 理工 =2|az+1=2|z+α| ....・・ ① かつ z≠-a (複素数 αは±1ではない) ①において, z= -α とすると, - +1=0 より α = ±1 となり, 条件を 満たさない。 したがって, z≠-α は ①に含まれるので,①を考察すれば よい。 |a|=2 →(チ) のときは|al/z+2=2|z+α すなわち となり、この等式を満たす点全体からなる図形Cは直線となる(2g -a, 1を結ぶ線分の垂直二等分線)。 次に①の両辺を平方して式変形をする。 |az+1=22|z+α| (az+1)(az+1)=4(z+α) (z+α)( (az + 1) (az+1)=4(z+α) (z+α) aazz+az+az+1=4 (zz+az+az+aa) |a|°/z+αz+αz+1=4|z|+4az+4az+4|2 (a-4)2+(a−4a) z+(a-4a) z+1-4|a|=0......2 したがって, |α|≠2のとき a-4a +- -z+ 070a-4 la-4 1-4/a =0 lal²-4 a-4a zz+ a-4a z+ la-4 a²-41 z+ 4/21-4/ -=0 la-4 (2+i a-4a a-4a la-4a 1-4a² + ++ = (la²-4)2 la-4 Tal²- a-4a la-41 (a-4a) (a-4a) (1-4a) (a-4) la-4a²-4a²+16|a²-a²+4+4a-16a² (la-4)2 (la-4) la-4 (la²-4)2 慶應義塾大理工 .. a-4a 4-la 2023年度 数学 <解答> 37 4\a\'-4a²-4a²+44 (a²-1) (a²-1) (la-4)2 (la²-4)² 4 (a2-1) (a²-1) 4a²-112 (la²-4)2 (la-4)2 a²-1 a²-4 よって, α ≠2のとき, ①を満たす点 全体からなる図形Cは円となり 中心は a-4a →(ツ) 4-a730 a²-1 半径は 2 ||a|²-4 である。 直線Cは, |α| =2のときの②より (a-4a) z + (a-4a) z=15 虚 軸 ABz O 15 実軸 2 と表される。 α-4α =β (≠0) とおくと Bz+Bz=15 ..(ßzの実部)= 15 2 したがって, Bz の表す直線は、 15 2 を通り,実軸 り に垂直な直線である。 よって, Bz の最小値は - 15 である。 2 15 15 B 228 (B=0) ここで、等号が成り立つのは,(ßzの虚部)=0のときであるから +15 Bz= 15 すなわち z= (β≠0) 20 2B のときである。したがって, la =αα=4を用いて,求めるは 15 15 15 15a z= = (テ) 2B 2(a-4a) できる。 2 (a2-16) 2(a-16) (4)( である。 別解 (1) アポロニウスの円の知識を用いる方法> |αz+1|=2|z+α| ...... ① 14 2023年度 数学 慶應義塾大 理工 慶應義塾大 理工 5 OA Mon (1) αを±1ではない複素数とする。 複素数平面上で az+1 =2を満たす点 全体から z+α なる図形をCとする。 Cはαが (チ)を満たすとき直線となり,(チ)を満たさない (ツ) とき円となる。αが (チ)を満たさないとき 円Cの中心をαを用いて表すと となるαが(チ)を満たすとき, 直線C上の点zのうち、 その絶対値が最小となるもの をαを用いて表すと (テ) となる。 【物理 (2科目120分) 2023年度 物理 15

解決済み 回答数: 1
物理 高校生

物理基礎の質問です 図aでは運動方程式、図bでは力のつりあいの式を立ててますが、なぜ運動方程式の物体Bについての式ではma=T-mgでT=mg▶︎ma=mg-mg▶︎ma=0にならないんですか? T=mgでつりあってるんじゃないんですか?

mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 μo, 動摩擦係数をμとして,次の問いに答えよ。 m B (1) 0 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさを求めよ。 (2)001 のとき,Aが斜面下方へすべり始めた 。 M を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 「解説 (1) 図a で, 糸は軽いので, 両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので, 動摩擦力μNを受ける。 〈運動方程式の立て方> (p.56)で. STEP Aは右向き, Bは下向きの 同じ大きさの加速度をもつ。 STER 2 図のように軸を立てる。 STEP 3 Aについて、 A μN a1 : 運動方程式: Ma1= +T-μN...... ① v : 力のつり合いの式: N = Mg... ② Bについて X: 運動方程式 ma」= +mg-T ③ ①+③より, N YA -X B 必ず 等しい Mg a₁ mg Tを消すためのおき, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ g 答 M+m 図 a 1 と同じ向きの力は 正, 逆向きの力は負 →ナットクイメージ m→∞にもっていくと, ag つまり, Bの自由落下に近づく 第5章 運動方程式 | 59

未解決 回答数: 1
1/1000