学年

教科

質問の種類

数学 高校生

共通接線、微分の範囲の問題です。 (3)です。 ①D:yがなんでこうなるかわからない ②Dがx軸に接する時なぜ頂点のy座標が0になるのですか? 以上2点についてよろしくお願いいたします。

144 第6章 基礎問 90 共通接線 2つの曲線 C: y=x', D:y=x2+px+g がある. (1)△C上の点P(a, α) における接線を求めよ >(2) 曲線DはPを通り, DのPにおける接線は1と一致するこ のとき,b,g をαで表せ. (2)のとき,Dがx軸に接するようなαの値を求めよ. (2) 2つの曲線 C, D が共通の接線をもっているということです が,共通接線には次の2つの形があります。 (I型) P (Ⅱ型) y=f(x) y=g(x) y=f(x) y=9(x) P 192 アイは よって, (3) D:y= Dがx軸 : g- よって . C 注 a= は,図 である (2)ホ α 違いは,接点が一致しているか, 一致していないかで,この問題は接点がP で一致しているので(I型)になります。 f(エ f'( どちらの型も、接線をそれぞれ求めて傾きとり切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう。 解答は、この公式を知らないという前提で作ってあります。 解答 (1)y=x3より,y'=3x2 だから,P(a,d) における接線は, y-d=3a²(x-a) :.l:y=3ax-2a3 ...... ア 186 ポイン (2)PはD上にあるので,a2+pa+q=a...... ① また,y=x+px+α より y'=2x+p だから, Pにおける接線は,y-d=(2a+b)(x-a) :.l:y=(2a+p)x+a-2a²-pa y=(2a+p)x+q-a² ...... ( DE ) 演習問題 9

解決済み 回答数: 1
数学 高校生

解の存在範囲の問題です。手順1のD>0の時のaの範囲を求めるとき、単純に因数分解できなかったので解の公式を使って因数分解しようとしたらDの中身が負になってしまいました。解答の平方完成でDが常に正だと言うのはわかったのですが、解の公式で求めたaは何を表すのでしょうか。

基本 例題 128 2次方程式の解と数の大小 (1) ①①①① | 2次方程式 x2-2(a+1)x+3a=0が, -1≦x≦3の範囲に異なる2つの実数解を もつような定数αの値の範囲を求めよ。 [類 東北大 ] 基本 126 127 重要 130 2次方程式 f(x)=0 の解と数の大小については,y=f(x)のグラフとx軸の共有点の 位置関係を考えることで,基本例題126 127 で学習した方法が使える。 すなわち, f(x)=x2-2(a+1)x+3a として 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ ★ ⇔ 放物線y=f(x) がx軸の-1≦x≦3の部分と, 異なる2点で交わる したがって D>0, -1< (軸の位置)<3,f(-1)≧0,f (3)≧0 で解決。 CHART 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目 この方程式の判別式をDとし, f (x)=x2-2(a+1)x+3a 3章 13 2次不等式 解答 とする。 y=f(x) のグラフは下に凸の放物線で,その軸は 直線x=α+1である。 THAHO de 方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数指針」 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と, 異なる2点で交わることである。 すなわち、次の [1]~[4] が同時に成り立つことである。 [1] D > 0 [2] 軸が-1<x<3の範囲にある [3] f(-1)≧0 [4] (3) 吹 の方針。 2次方程式についての問 題を, 2次関数のグラフ におき換えて考える。 よって, D>0は常に成り立つ。 ゆえに [1] D={-(a+1)-1・3a=a-a+1=(a-1/2)+3 (*) (+)-(-1<()<3 [2] 軸x=α+1について −1<a+1<3 I+D)-SD(S)\ すなわち -2<a<2 [3] f(-1)≧0から ...... ①のと (−1)-2(a+1)(-1)+3a0 2つもつこと3 5a+30 すなわち a ≧ - 5 になり + Oa+1 3 21 x (一)(1+\2 この問題では, Dの符号, 軸の位置だけでなく,区 間の両端の値 f(-1), f (3) の符号についての 条件も必要となる。 YA [4] f(3) ≧0 からと32-2(a+1)・3+3a≧0 ゆえに3a+30 すなわち a≦1 ③ to) ① ② ③ の共通範囲を求めて -> -2 3 1 2 a 3 5 -≤a≤1 5 注意 [1]の(*)のように, αの値に関係なく、常に成り立つ条件もある。

解決済み 回答数: 1
数学 高校生

高一数1 青チャート 二次関数 付箋の質問に答えていただきたいです。よろしくお願いします。

210 基本 00000 127 放物線とx軸の共有点の位置 (2) 2次関数y=x-(a+3)x+αのグラフが次の条件を満たすように、定数αの値 の範囲を定めよ。 (1) ・軸のx>1の部分と異なる2点で交わる。 ・軸のx>1の部分とx<1の部分で交わる。 指針 (2)( 基本126 ここでは0以 前の例題ではx軸の正負の部分との共有点についての問題であった。 外の数々との大小に関して考えるが, グラフをイメージして考える方針は変わらな い。 (1) D0. (軸の位置)>1, j(1)>0 を満たすように、定数αの値の範囲を定める。 (2) f(1)<0 基本例 1282次方程式の解と数の大小 (1) 00000 2次方程式-2(a+1)x+34=0が, -1x3の範囲に異なる2つの実数解を もつような定数の値の範囲を求めよ。 [類 東北大]基本 126 127 130 指針 2次方程式(x)=0の解と数の大小については、y=f(x)のグラフとの共有点の 位置関係を考えることで、基本例題 126 127 で学習した方法が使える。 ★ すなわち, f(x)=x^2(a+1)x+34 として 2次方程式(x)=0)が1x3で異なる2つの実数解をもつ 放物線y=f(x)がx軸の16x3の部分と、 異なる2点で交わる したがってD>0, -1 < (軸の位置) <3(-1)≧0 (3) 20で解決。 211 CHART 2次方程式の解と数々の大小 グラフ利用 D..∫(k) に着目 ③ のみか? b f(x)=x-(a+3)x+α²とし, 2次方程式f(x)=0の判別式をDとする。 af である。 解答 y=f(x)のグラフは下に凸の放物線で, その軸は直線x= (1) y=f(x) のグラフがx軸のx>1の部分と異なる2 点で交わるための条件は、次の [1] [2] [3] が同時 に成り立つことである 20 [(軸)>1] この方程式の判別式をDとし, f(x)=x2(a+1)x+3a 解答とする。 y=f(x)のグラフは下に凸の放物線で、その軸は 直線x=α+1である。 ② 33 65 21軸がx>1の範囲にある 0 1 +3 よって =-3(a+1)(a-3) -1<a<3 DP [3]f(1)> [1] D=f-(a+3)}-4・1・α°=-3(α-24-3) D0 から (a+1) (a−3) <0 [2] 軸x=aについて 2 ゆえに a+3>2 すなわち 4>1 [3] f(1)=12-(a+3) ・1+α²=a-a-2=(a+1) (a-2) f (1) > 0 から a<-1, 2<a ...... ① a+3 1 ① ② ③ の共通範囲を求めて ...... ③ 2<a<3 (2) y=f(x) のグラフがx軸のx>1の部分とx<1の 部分で交わるための条件は ゆえに (a+1) (a-2) <0 すなわち -1<a<2 (1)<0 注意 例題 126, 127 では 2次関数のグラフとx軸の共有点の位置 -1 a 0 x O に関する問題を取り上げたが、 この内容は, 下の練習 127 の ように, 2次方程式の解の存在範囲の問題として出題されることも多い。 しかし 2次方程 式の問題であっても, 2次関数のグラフをイメージして考えることは同じである。 練習 2次方程式 2x2+ax+α=0が次の条件を満たすように, 定数 α の値の範囲を定めよ。 ② 127 (1) ともに1より小さい異なる2つの解をもつ。 (2)3より大きい解と3より小さい解をもつ。 方程式 f(x)=0が1≦x≦3の範囲に異なる2つの実数 指針」 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と、 異なる2点で交わることである。 すなわち、次の [1] ~ [日が同時に成り立つことである。 D> 0 [21 軸が-1 <x<3 の範囲にある [3] (-1)≥0 [4] (3)≥0 [1] 41=(-(a+1)-1・3a=a-a+1= (a-212)1+1/20 よって, D>0は常に成り立つ。 (*) [2] 軸x=α+1について -1<a+1<3 すなわち -2<a<2 ...... ① [3] f(-1)≧0から (-1)-2(a+1)(-1)+3a≥0 (127(1),(2)(128について、 (27(1)、128のように 3 の方針。 2次方程式についての間 題を 2次関数のグラフ におき換えて考える。 この問題では, D の符号、 軸の位置だけでなく、区 間の両端の値(-1). /(3)の符号についての 条件も必要となる。 __1() <3 35 12次不等式 [(27(2) [1][2][3]確かめ D,軸、f(F)を考えるときと、☆ (27(土)のように f(k)のみ(D.軸は考えない) 問題はどのように見分ければ たり、 128 を[3][4]だけ 確かめたり、 でも良いのではないか? と思ってしまいました。 良いですか?☆の3要素が重要な区別の仕方を教えて 下さい! 親は分かるのですが、

解決済み 回答数: 3
数学 高校生

⑴なのですがaの範囲を求めに行く過程で模範解答とは違って判別式を使ってときました。答えは合っているのですが考え方として合っているのか心配です。判別式で解いても問題ないのでしょうか。またこの答え方で減点なく丸が貰えますか。この二つ、よろしくお願いします。

演習 例題 131 2つの2次関数の大小関係 (1) 00000 2つの2次関数f(x)=x2+2ax+25,g(x)=-x2+4ax-25 がある。 次の条件が 成り立つような定数αの値の範囲を求めよ。 (1) すべての実数xに対してf(x)>g(x) が成り立つ。 (2)ある実数xに対してf(x) <g(x) が成り立つ。 基本115 f(x うな ((1) 指 指針 y=f(x), y=g(x) それぞれのグラフを考 えるのではなく,F(x)=f(x)-g(x) とし, f(x), g(x) の条件をF(x) の条件におき 換えて考える。 (1) y=f(x) y=F(x) (1) すべての実数xに対してf(x)>g(x) すべての実数xに対してF(x)>0 y=g(x)/ + (2) (2)ある実数xに対してf(x)<g(x) y=f(x) y=F(x) ⇔ある実数xに対してF(x) <0 大 このようにおき換えて, F(x) の最小値を 考えることでαの値の範囲を求める。 小 y=g(x) O [補足] 例題 115 で学んだように, 判別式D の符号に着目してもよい。 F(x)=f(x)-g(x) とすると 解答 F(x)=2x2ax+50=2(x-2) - 10/27 +5 - 0²- 50 (1) すべての実数xに対してf(x)>g(x)が成り立つことは, すべての実数xに対してF(x)>0, すなわち [F(x) の最小値] > 0 が成り立つことと同じである。 F(x)はx=1/2で最小値 a² 2 +50 をとるから a² - +50> 0 よって1012+5 - よって (a+10)(a-10)<0 ゆえに -10<a<10 (2)ある実数xに対してf(x) <g(x) が成り立つことは, ある実数xに対してF(x) < 0, すなわち [F(x)の最小値] <0 が成り立つことと同じである。 a² +50<0 晶検討 「ある xについて が成り立つ」と は よって a<-10, 10<a ゆえに (a+10)(a-10)>0 を満たす が少なくとも1つ あるということ である。 ④ 131 つような定数kの値の範囲を求めよ。 練習 2つの2次関数f(x)=x2+2kx+2, g(x)=3x2+4x+3がある。 次の条件が成り立 (1) すべての実数xに対してf(x) <g(x)が成り立つ。 (2)ある実数xに対してf(x)>g(x)が成り立つ。

解決済み 回答数: 1
1/1000