学年

教科

質問の種類

物理 高校生

高二物理の問題です。基礎的な部分でお恥ずかしいのですが、この問題は物体が斜面から受ける垂直抗力を求めているのになぜ、N🟰で終わらず、力の大きさFまで考えなければいけないのでしょう?

図のように、 水平とのなす角が0のなめらかな斜面上に、質量 mの物体を置き, 水平方向に大きさFの力を加えて静止させた。 重力加速度の大きさをgとして, 力の大きさFと,物体が斜面か ら受ける垂直抗力の大きさを求めよ。 N ANcos 0 SUOJATE ■指針 物体が受ける力はつりあっている。 これらの力を互いに垂直な2つの方向に分解し, 各方向で力のつりあいの式を立てる。 解説 垂直抗 力をNとすると, 物 体が受ける力は図の ようになる。 鉛直方 向と水平方向のそれ ぞれの力のつりあい から, 鉛直 : Ncose-mg = 0 N=- 水平: F-Nsin0=0 これにNを代入し、 ONT 激 F=Nsin0= xsin0= mgtan0 mg coso Nsine 0 mg F mg 60m coso 10 INTE DE 別解物体が 受ける力を、斜面に 平行な方向と垂直な 方向に分解してもよ い。 この場合、各方 向における力のつり あいから, を聞かせるためには 平行: Fcos-mg sin0=0 mg 垂直: N-mg cose-Fin=0.① 式 ① に求めたFを代入して, NA mgsin 0 mg (cos20 +sin20) = cose 11 FOR = Fcoso mg cose F Fsine Amgcoso F=mgtan0 hadi C N = mg cos0+Fsin0=mgcoso+mg Oct. Or msin²0 coso

未解決 回答数: 1
PromotionBanner
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
1/565