学年

教科

質問の種類

数学 高校生

棒全部から下がわからないです。

□130 太郎さんと京子さんは,命題の証明に関する次の問題について話している。 【問題】 a b は実数とする。 このとき, 次の命題を証明せよ。 活用間 131 文 「a +6≦2 ならば, a ≦1 または 61である。」 小 太郎:この命題の対偶は証明できそうだね。 た 京子:そうだね。 この命題の対偶はアならば,イ」になる。 太郎: 対偶を証明する以外に,この命題を証明する方法はないかな。 京子:次のように考えてみたらどうだろう。 α+6≦2 のとき,a≦1であ るなら,この命題の結論は真になるから,この場合は考える必要がな い。 a+b≦2 で, さらにウであるときに, エであることを 証明すれば十分である。 京子 太郎 京子 太郎 : 確かにそうだね。 それなら,次のようにして証明できる。 【太郎さんのノート】 a + b≦2 より b≤2-a ここで,ウ であるとき したがって, ウ であるとき, エ となる。 (1) に当てはまるものを、次の各選択肢のうちから一つずつ選べ。 ア の選択肢 ⑩ a ≦1 または 6≦1 ① a ≦ 1 かつ 6 ≦1 ② a > 1 または 6>1 ③ a > 1 かつ 6>1 の選択肢 ⑩ a + b 2 である ① a+b>2 である ウ オに当てはまるものを、次の各選択肢のうちから一つずつ選べ。 選択肢 ⑩a > 1 ① a ≦1 I の選択肢 ⑩6 > 1 ① b≦1 の選択肢 ⑩ -α <-1 ① a ≧ - 1

回答募集中 回答数: 0
1/500