学年

教科

質問の種類

数学 高校生

1番は体積の最小値を求める問題 2番は表面積の最小値を求める問題です ここで,xとrで置いてる部分ってなぜそこをxとrでおいてるんですか?

7) a このとき, 直線 ①と両座標軸との交点の座標 (2,0), (0,2b)であり,Sの最小値は2 る。 184 ■指針 2ab Ta (1) 球の中心を通り、底面に垂直な平面で 円錐を切ってできる切り口の三角形を考え る。 円錐の頂点と球の中心の距離をxとし 円錐の体積をxを用いて表す。 (2)表面積を体積を表す式で表すことができ (1)の結果が利用できる。 (1) 球の中心を0とし, 0を通り底面に垂直な 平面で直円錐を切って できる切り口の三角形 を △ABC とする。 A x ... ア 3r dV 0 dx V 583 + よって,Vは x=3rで最小値 / ara をとる。 別解 [②までは,本解と同じ] (x+r2=(x-r)2+4rx であるから V= =(x-r2+4mx-r) +42 x²(x+r)² 3(x-r) ar2 (x-r2+4nx-r) +42 3 x-r 2 == (x-r) + 4r2 3 +4rs x-r また, 球の切り口の円 D との接点を図のように D, E とする。 0 OA = x とすると, x はより大きいすべて の実数をとりうる。 V≧ B ① より xr>0であるから,相加平均と相乗平 均の大小関係により 123 (2√√(x-7). Ar²+4)=3 472 8 x-r E 881 4r2 等号が成り立つのは,x-r= すなわち x-r よってxr △ABE △AOD であるから BE:r=(x+r): √x2-22 BE: OD=AE: AD すなわち よって ゆえに BE= √√x²-72 BE√x2=(x+r) (x+r) 直円錐の体積をVとすると (x-r2=4r2 のときである。 xr>0であるから よって x=3r x-r=2r ゆえに,Vはx=3yで最小値 / ara をとる。 T (2)直円錐の表面積を S とすると S=7. BE² DES +1/2AB AB 2TBE 2π BE V=BE². AE =BE (BE+AB) 0= AB、 ここで, mx+r) 2 (x+r) BE: OD=AB: AO 2 y2(x+2)2 = 3(x-r) dV dx 3 [側面の展開図] であるから -> (x>r) 22(x+r)(x-1)(x+r2.1 AO AB= ・BE OD よってAB=BE (x-2)² r ゆえにS=BEBE+BE)=xBE (1+-) r 2(x+r)(x-3) 3(x-r2 xにおいて, dv = 0 とすると x=3y dx ①の範囲におけるVの増減表は次のようになる r(x+r) 2 =π Tr(x+1)² 3. x-r r (+1) (1) から, Sはx=3rで最小値 をとる。 38 r 18 . TY r² = 8 x²

未解決 回答数: 1
1/500