数学 高校生 4分前 この問題教えてください! 順列です、 4 6個の数字 0, 1,2,3,4,5のうちの異なる3個を並べて, 3桁の整数を作るとき,5の 倍数は何個作れるか。 回答募集中 回答数: 0
数学 高校生 6分前 黄色のペンで書いてるようになぜ二乗が消えてるのかと、足してた28はなぜかけているのかが分からないので教えて欲しいです🙇♀️ (2)与式 -8x+10) 1.0(1) =((x+1)(x+10)](x+2)(x+9))-180 =((x²+11x)+10]{(x2+11x) +18) - 180 =((x²+11x)2+28(x2+11x)+180) - 180 =(x²+11x)2+28(x²+11x) =(x²+11x){(x2+11x)+28) ={x(x+11)}{(x+4)(x+7)}>.0- = x(x+4)(x+7)(x+11) 75 129 回答募集中 回答数: 0
生物 高校生 9分前 (2)の求め方を教えてほしいです🙇♀️ 接眼ミクロメーターと対物ミクロメーターの目盛りが重なるところを計算すると学び、ペンで丸したところだと思ったのですがちがいました。複数目盛りが重なるところのある中、初めに重なったところを計算するという考えで合っていますか? (伝わりに... 続きを読む 2d/250 2 2042 【3】 ミクロメーターについて以下の問いに答えなさい。 25 Co. (e) Qas 20 接眼ミクロ 30 8. || メーター 対物ミクロ メーター Ibil 20 30 接眼ミクロ メーター 10 0 細胞 8 THE 40 (1)対物ミクロメーターには1mmを100等分した目盛りがつけられている。 対物ミクロメーターの1目盛りの長さは何μm か 10, (2)接眼ミクロメーターを接眼レンズに入れ、対物ミクロメーターをある倍率で観察した ところ, (a) のようになった。接眼ミクロメーター1目盛りの長さを求めよ。 12.5 山 J fxcofco 回答募集中 回答数: 0
物理 高校生 22分前 高一物理です。 (5)の解説をお願いします!答えは15m/sです。 (2) 30秒から60秒の間、電車は直線区間を一定の速さで進んでいる。 このような運動を何というか。 (3) A駅からB駅までの電車の平均の速さは何m/sか。 思考・判断・表現のもんだいであることを示す。 1. 図はA駅と隣のB駅間1600mを走行する電車がA駅を出発してから の時刻t [s] と走行距離x 〔m〕 を示したx-t図である。 電車は、この 区間を1分40秒で走行した。 ただし、二つの駅の間は直線区間である。 また、図中の破線(点線) はP点に引いた接線である。 知 (1)電車はA駅を出発して60秒後からB駅に停止するまでは、 一定の 割合で減速しながら進んだ。 このような運動を何というか。 移動距離 ・接線が瞬間の BER 1600 1400 1200 1000 800 x[m] 600 400 200 A R 0 20 40 60 80 100 4 A駅を出発してから600mの地点を走っている電車の瞬間の速さは 経過時間 t [s] 何m/sか。 C⑤ B駅のホームに差し掛かったP点を通過しているときの電車の瞬間の速さは何m/sか。 2. 図のように 軸上の加 回答募集中 回答数: 0
数学 高校生 40分前 89(1)の回答の 重解は の後の式がよくわからないのでどういう意味なのか教えてください🙇🏻♀️ □88mは定数とする。 次の2次方程式の解の種類を判別せよ。 (1)x2-mx+2m-3=0 *(2)x2+(m+3)x+m²=0 ✓ 89 次の2次方程式が重解をもつように, 定数kの値を定めよ。 また,そのとき の重解を求めよ。 *(1) x2-2(k+1)x+4k=0 (2)k(x-1)(x-2)=x2 ✓*90 2次方程式x2-x+7=m(x+1) が虚数解をもつように,定数m の値の範囲 を定めよ。 解決済み 回答数: 2
数学 高校生 41分前 例題8と42番の(1)について 例題8は底面2つの色を先に決めて7✕6をしています しかし42番は解説には①と②を6✕5をせず、「①を固定し、②は何でも良いので5通り」と示されています。例題8と42の違いはなんですか。 長文すいません 奴と確率 7 【え方) 腕輪は何通りできるか。 右の図の2つの円順列は腕輪としては同じものである。 1つの腕輪に対して円順列が2通りずつ対応する。 よって (4-1)! 3(通り) 2 41 色の異なる6個の球を糸でつなぎ腕輪を作る。 腕輪は何通りできるか。 例題 立体の色の塗り分け 8 「考え方 >>>>LU 129 数 p. 166 演習問題2 正五角柱の7つの面を異なる7つの色をすべて用いて塗る方法は何通りある か。ただし,正五角柱を回転させたり、上下をひっくり返したりして一致す 塗り方は同じものと見なす。 まず、底面の色の塗り方を考え,次に,側面の塗り方を円順列を用いて 考える。 まず、上の底面の色は7色のどの色でもよいから 7通り 下の底面の色は残りの6色のうちどの色でもよいから 6通り 側面の塗り方は、残りの5色の円順列の総数に等しいから (5-1)! 通り 上下をひっくり返すと側面の色の並び方がもとのものに一致する塗り方が2つずつある。 7 × 6 × (5-1)! よって, 求める塗り方の総数は 2 = 504 (通り) 242 同じ大きさの6個の球と同じ長さの12本の棒を使って, 図 のような正八面体の模型を作った。 球と棒はそれぞれ頂点 と辺になっている。 今からこの6つの球にそれぞれ1つの 色を塗り, 棒でつながっている球は異なる色にしたい。 色 の数を次のようにした場合, 塗り方は何通りあるか。 ただ し 正八面体を回転させて一致する塗り方は同じものと見なす。 (2) 5色 ⑩ 6色 1節 場合の数 111 回答募集中 回答数: 0
数学 高校生 約1時間前 (3)について質問です。 赤線部において、項数×2をして項の値を求めているのはなぜですか?🙏🏻 応用問題 5 奇数を1から小さい順に並べ, 下の図のように仕切り線を入れる.仕切 り線に区切られた部分を左から1群, 2群,3群,・・・と呼ぶことにすると, 第k群にはk個の項が含まれている. 1, 13, 5, 7, 9, 11, 13, 15, 17, 19, 121, 23, 25, 27, 29, ... 110022 (1) 第20群の初項は何か. (2)999は第何群の第何項目にある数か. (3)第n群の項の総和を求めよ. 1+3+ 解決済み 回答数: 1
物理 高校生 約1時間前 この問題の解き方がいまいちわかんないし、公式を使ってもどこに何を代入したらいいかわかんないです。教えてください🙏 直線上の点にあった物体が, 時刻 t = 0s にこの 直線上を右向きに 6.0m/sの速度で出発した。その一 後は等加速度直線運動を行い, t = 16s には左向き 2.0m/sの速度になった。 O 6.0m/s 2.0m/s t=16s t=0s (1) 物体の加速度の向きと大きさを求めよ。 向き:17 大きさ:18 (2) 物体が点から右向きに最も離れる時刻を求めよ。 19 (3) t = 16sのときの物体の位置を求めよ。 点0からの向き:20 点からの距離:21 回答募集中 回答数: 0
数学 高校生 約1時間前 この二問の解き方を教えてください😭 次の等式がについての恒等式となるように, 定数 α, b,cの値を定めよ。 3 (1) a = -+ (x-2x-3) b x-2 x-3 x+1 a b (2) = 2a-21:0 (x-1)(x-1) x-1 3x-1 + 3 = a(x-3) + b (x-2) 7-3a+26=13 x+/- α(3x+1)+ | 回答募集中 回答数: 0