学年

教科

質問の種類

数学 高校生

確率の問題です。 (2)の解説を読んでもいまいちピンとこず、止まってしまっています。 特に不等式の変形、そして成り立つabcの求め方が自分にとっては複雑に感じます。 飛ばしたほうがよいでしょうか? 知恵袋では、スマートで応用の効く求め方もありました。

EX 332 次の問いに答えよ。 (1) 1/+1/21 -≧1 となる確率を求めよ。 a 大・中・小3個のさいころを同時に投げて、出た目の数をそれぞれa, b, c とする。 このとき [滋賀] a (2)/1/+1/2/ となる確率を求めよ。 (1)[1] a=1のとき bの目は1~6の 6通り [2] α=2のとき b=1,2の2通り 知恵袋に [3] α=3 のとき b=1の 通り a=4,5,6 のときも同様に1通りずつ [1], [2],[3] から, 求める確率は 1 1 1 -≥ である。 a 6 6 3 [1] c=3,4,5,6 のとき 結果はcの値にはよら ないので,2個のさいこ ろの目のみについて考え 別解ありればよい。 6+2+1×4=130 62 a,bは何であっても不等式が成り立つから, いずれも36通りずつ [2] c=2 のとき 1 a 12 を満たすα, b を求める。 a = 1, 2, 3 のとき 1=1 1=1 6から1/22/16 b≤6 a 1から言 c≧3 であるから 11 C M + ab VII a 11/11/13 から 2 a 11 1 また 1/13/1 13 12 1 +a≤3 6 +6≤6 Jei 6 b よって、すべてのbに対して 12/21/11/12が成り立ち、い ずれも6通りずつ a b 6=1,2,3,4の4通り a=4 のとき a=5のとき 6=1,2,3の3通り a=6 のとき [3] c=1 のとき (1)の結果から 12通り b=1,2,3の3通り [1],[2],[3] から, 求める確率は 36×4+(6×3+4+3+3)+12_184_23 63 216 27 27 1 IIV b 12 10 b

回答募集中 回答数: 0
数学 高校生

(4)の矢印書いてるところがわかりません。どなたか教えてください🙇‍♀️

基本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax+bx+c のグラフが右の図で与えら れているとき、次の値の符号を調べよ。 (1) a (2) b (4) b2-4ac (5) a-b+c (3)c A CHART & THINKING グラフから情報を読み取る 10.31 基本事項 A.基本 51 97 上に凸か、 頂点の座標は? 下に凸か? 3歳 式の値は直接求めることができない。 「上に凸か、下に凸か」, 「軸や頂点の位置」. 軸との交点の位置」 などに着目して、 式の値の符号を調べよう。 1 における 0 座標は? 7 x 軸との交点の 位置は? 軸の 位置は? 「関数とグラフ 解答 ax2+bx+c=ax+ 2a =a(x+b)²= b²-4ac ☆ax+bx+c 4a よって, 放物線y=ax2+bx+c の軸は 直線x=- b2-4ac b 2a' =a(x²+10x)+c 頂点の座標は Aa 軸との交点のy座標はcol(x+2)-(1)+c b る。 =a(x+2)-a (20)²+c 2a また, x=-1のとき y=a(-1)2+6(-1)+c=a-b+c =(x+2)- b2-4ac Aa (1) グラフは上に凸の放物線であるから a≤0 b b (2) 軸が x < 0 の部分にあるから <0 >0 2a 2a b<0 (1)より, a<0 であるから (3)グラフがy軸の負の部分と交わるから (4) 頂点のy座標が正であるから c<0 b2-4ac >0 Aa 放物線y=ax+bx+c について, (1) より, a< 0 であるから -b2-4ac) <0 すなわち b2-4ac>0 (5) a-b+c は, x=-1 におけるyの値である。 グラフから,x=1のとき y>0 x軸と異なる2点で交 わる > 0 b-4ac が成り立つ (p.139 以降 を参照)。 すなわち a-b+c>0

回答募集中 回答数: 0
数学 高校生

解説お願いします。 右ページの『キ』が答えは⑨なのですが、解説には『キ』は答えのみしか載っていなくて、なぜ⑨になるのか分からないので、途中式含めて教えていただきたいですです。 よろしくお願いします。

(注)この科目には、選択問題があります。 数学Ⅱ, 数学 B 数学C 015779 第1問 (必答問題) (配点 15 ) (1) 次の問題Aについて考えよう。 (i) p>0のときは, 加法定理 cos(e-α)= cose cosa + sino sin α を用いると y = sin0 +pcoso= キ cos(e-α) と表すことができる。 ただし, αは 試作問題 数学Ⅱ・B・C ケ 問題A関数y = sin 8 + vscose (0≧≦)の最大値を求めよ。 sin α = COS α = 0<α< キ キ TI √3 を満たすものとする。 このとき, yは0= コ で最大値 sin/ = , COS 2 ア TT ア = 1/ り立つ。 であるから, 三角関数の合成により g=2sin(a+1/4) サをとる。 2 π y= イ | sin 0 + ア 2 (ii) p<0 のとき, yは0= で最大値 ス をとる。 T と変形できる。 よって, yは0= で最大値 I をとる。 キ ケ サ ス の解答群 (同じものを繰り返し選 ウ んでもよい。) (2)pを定数とし、次の問題Bについて考えよう。 問題B 関数 y= sin0 +pcose (O≦es/z/)の最大値を求めよ。 にく (i) p=0 のとき,yは0= で最大値 をとる。 オ (数学Ⅱ 数学 B. 数学C第1問は次ページに続く。) -2- 0 -1 1 -p P ④ 1-P 1+P ⑥-p² ⑦ p2 1-p2 1+p2 @ (1-p)² (1+p)2 コ シ の解答群 (同じものを繰り返し選んでもよい。 ) 0 ①a -3-

回答募集中 回答数: 0
化学 高校生

一枚目は、気体の状態方程式に当てはめてやっていますが、二枚目は、液体か気体か確かめて、引いて求めて複雑な式になると思うのですが、どっちも 蒸発の問題でどうやって求めればいいか混乱してしまいます。 どうやってなんの式を使ったり、求め方を見極めばいいですか? 蒸気圧が問題文に蒸... 続きを読む

例題 2 気体の分子量 RT <16> はく アルミニ ウム箔 ある純粋な液体を,内容積 350 mLのフラスコ に入れ, 小さな穴のあいたアルミニウム箔でふた をした。 これを, 右の図のように沸騰した水 (97 ℃)につけて完全に蒸発させた後, 室温に戻して沸騰石 液体にした。 この液体の質量を測定すると, 1.0 gであった。 大気圧を1.0 × 105 Pa として こ の液体の分子量を求めよ。 ただし, 室温における 液体の蒸気圧は無視できるものとする。 解 97℃でこの液体はすべて蒸発し, フラスコ内の空気がすべて追い出され る。 フラスコ内は蒸気だけで満たされ, その圧力は大気圧と等しい。 小さな穴 アルミニウム箔 内容積 350mLの フラスコ 純粋な液体 97℃ 温水 放冷 蒸気圧の 大気圧の 純粋 = 大きさ 大きさ 液体 気体の状態方程式から導かれた式〈15〉に, R = 8.3 × 103 Pa・L/(K・mol), 1.0g p = 1.0 × 10Pa, V = 0.350 L, w = 1.0g, T = (97 + 273) K を代入 して,モル質量 M を求める。 M = WRT 1.0g x 8.3 × 10° Pa・L/(K・mol)×(97 + 273)K DV = = 87.7 g/mol 1.0 x 105 Pa x 0.350 L 類題 2 27℃ 83 104において ただ出の適 答 88

未解決 回答数: 2
1/500