学年

教科

質問の種類

数学 高校生

(ア)で合成をしないのは、 √5が出てきてもありがたいことがないからですか? √5になる角度なんて求めるのしんどいからですか?

●11 三角方程式・不等式 (ア) 2cos-sin0=1であるとき, cose, sin 0 の組を求めよ. (兵庫医療大・リハビリ, 改題) (イ) のとき, sin≧cos0 をみたすの範囲は [ である. 0 √√6 (ウ) 0°6<180° のとき, 2cos2 +sin 0- -1≧0 を解け. 2 2 (エ) sin0+ sin20+ sin30>0を0≦0<2の範囲で解け. (芝浦工大) (福岡大,商) (信州大・繊維) cos'0+sin20=1の利用 この基本関係式を用いて, cose と sin0の入った式を cose か sin0のど ちらか一方だけの式にそろえるのが基本の手法である. 単位円を利用 三角関数の方程式・不等式を解く際 にも単位円を活用しよう. 図 1 YA 図 2 12 点P (cose, sin0) は図1のような点を表す. よって 例えば「0≦02 のとき, sin≧1/2を解け」なら, P は図2の太線部にある (sin0はPのy座標だから, y1/2の範囲にある)ことから,T/6≦05/6 となる. また,次の前文 (1番目と2番目) も参照. 0 O 48 +56 12 y=1/ QA 6 HY 角をそろえる (ウ) のように 0/2 と 0 が混在するときは, 0にそろえよう。 合成の活用 例えば sin+cose は変数が2か所にあるが,合成すると1か所になる効果がある。 積の形に直す 多項式の方程式・不等式を解く際の基本は因数分解である. 三角方程式・不等式を 解くときも同様に,積>0 などの形にしよう. (エ)では,2倍角 3倍角の公式を利用すればよい。

未解決 回答数: 2
数学 高校生

(ア)の問題文を読んで書いた図が3枚目です。 なんで解答と違うんでしょう… また、cosは1が最大だからという3枚目の解き方のどこが違うのか教えてください🙇‍♀️ ちなみに(イ)は3枚目みたいな私の解き方で 図も答えもあっていました!

9 三角関数/合成 f(0) =2cos0-3sin (0≦≦T) の最大値は であり,最小値は (イ) f(0)=3sin20-2sincos+cos20 (0/2)は0で最大値 0で最小値をとる. COS で合成 acos+bsin••••••ア を cos で合成してみよう. P(a, b) とし, OP がx軸の正方向となす角 (左回りを正とする)をαとお くアをOP の長さ2+62 でくくることで,次のように変形できる. である. (日大文理・理系) YA P(a,b) b をとり, (星薬大) a b acos+bsin0=√a2+62 cos +sin 0. √√√a²+b² √a²+b² shQ =√2+62 (cosocosa+sinUsinα)=√a2+62cos(O-α) sin で合成 asin+bcoso (ア と cos, sin が入れ替わっていることに注 意)を,図のα を用いて sin で合成すると,次のようになる. a b asin+bcos0=√a2+62 sin 0. +cos ・ √2+62 ✓a2+62 =√a2+b2sin (0+α) a a 0 I a cosa= √a2+62 b sin a= Va²+62 =√a2+62 (sincosa + cossina) どちらで合成するか 最大・最小を求める問題で, 変域に制限があるとき,上のαが有名角でなけ れば, sin よりも cos で合成した方がどこで最大・最小になるかが分かり易いだろう. 1-cos2r sin x, COSの2次式 sin2x x= 2 cos2r= 1+cos2r 2 sin 2.x sinrcosr= を用いて, 2

未解決 回答数: 1
数学 高校生

定石なんだと思いますが、初見で π/2-Aではなくて、π/2+Aにしたんですけれど 答えが合いませんでした。 私の考え方がダメなのか、計算が間違っているのか教えてください🙇‍♀️

12 三角方程式・不等式 (ア) cos = sin(7/8) を解け. (類藤田保健衛生大医療) (イ) 連立方程式 [sinx+cosy=√3 cosx+siny=-1 (0≦x<2,0≦y<2) を解け. (関西大 ⇔A=B+ (2) xnor A=-B+(2) xn cosA =cos B or sin Asin B の形にする→培する図14 上式の形の方程式は, 右図を描き (思い浮かべて), 図1により, cosA=cosB 図2 YA -sinB cosB Bi O 1 0 B 1 図2により, sinA=sinB -B π-B ⇔ A=B+ (2) Xnor A=π-B+(2) xn とする.なお, sin A を cos の形に, cos A を sin の形に直すには, y 図 3 ax+by=c sinA=cos = cos(-A). cos A = sin 2 sin (A)を使う。 (P) P sine 50 cose 1 x acos0+bsin0=c X = cos 0, Y = sin0 とおくと, X2+2=1 aX + by = c を満たす. よって, 点P をP (cos 0, sin0) とおくと,Pは 円x2+y2=1と直線ax+by=cの共有点である (図3). このように視 覚化して, cos 0, sin0 を求める手法 (単位円を利用) も押さえておこう. 連立方程式は '一文字消去' が原則 して, æだけの式にしよう {: Stand+cased = 11-4 ②それ自体を2秒△ (イ)では,まず cosy, siny を cos'y+sin'y=1 を用いて消去 (3) @ Sindade ②舗 ③壊する YA と切ない 解答量 5363 7 (ア) cossin π T=COS 8 3 3 0=+2nm または 0=- 「すみれ 8 2 8 π=COS 8 π 8 +2n n は整数) = cos(-7)= cos(-3)-cos 31). により, 38 12 1 x

解決済み 回答数: 1
数学 高校生

次の問題が最初からよく分からないのですがどなたか解説お願いします🙇‍♂️

63 三角方程式 たとえば,右図の位置に動径があるとき, 角度の 呼び方は, 与えられた範囲によって変わります。 * L, 0≤0<2π £51£1π†l, −π≤0<π YA O 1 T ならば一人になります.この問題では O≦x<≦BSとするとき π 2 COS --q = sina を用いて, sina=cos2β ...... ① をみたすβ をαで表せ. 精講 この問題は数学Ⅰの範囲で解けますが, 弧度法の利用になれること も含めて,ここで勉強します. この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 (α, β) も異なります. このタイプは,まず種類を統一す ることです.そのための道具が cos(フレーム)- --α = sina で, これで cos に統一で きます. そのあとは2つの考え方があります. 0≦2B≦2z,0<-usとなっているので,2B=-α と 2π- -(-a)になります。昔をと考えてみたらわかるはずです。 a) (別解) cos28=cos (テーマ)より,cos28-cos (フレーム)=0 和積の公式より, -2sin(B+4) sin(B-4+/1/1) = 0 ∴. 57 参照 sin(B+4) =0 または,sin (B-4+2/2) = 0 π a 0<¼¯q≤4, 0≤ß≤π kŋ 2 a <B+= AB-A+ 4 2 解 答 π COS α = sina より ① は, 2 (-) 5π π a .. B+4=x.B-4+量/2=0 YA - よって、B-1 +1 π a cos(-a) ・+ 3 4 2'4 2 注 どちらの解答がよいかという勉強ではなく, どちらともできるよ うにしておきましょう。 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です . ここで, cos 2ẞ=cos 0≤2ẞ≤2, 0<- だから右の単位円より, 3π 2ẞ=7-α, +α 2 B=-0.31% π a 3π a . 4 4 2 注 参照 EN +α 3π +α を -(-) と表現してはいけません.それは 0≦2B だ 3π +2π= +α がこの範囲においては正しい表 2 からです.-(-a)+2 現です. ポイント 種類も角度も異なる三角方程式は 演習問題 63 まず, 種類を統一する αで表せ. S,SBSとするとき, sina=cos2β をみたす B を

解決済み 回答数: 1
数学 高校生

三角関数の不等式の問題です。 ⑵の線を引いた部分が理解できません。 どなたか簡単に解説していただけると助かります。

202 基本 例題 124 三角方程式・不等式の解法 (2次式) 0≦0 <2π のとき,次の方程式・不等式を解け。 (1) 2cos'-sin0-1=0 CHART & SOLUTION (2)2sin'+5cos0 <4 sin0 と coslを含む2次式 1つの三角関数で表す かくれた条件 sin 20+cos20=1 を活用して, 与えられた方程式・不等式を、 どちらか一方で表された方程式・不等式に整理する。 (2)0≦2 のとき, -1≦cos 0≦1 に注意。 基本18 sin0, Cos 解答 ⑩ (1) 方程式を変形して 整理すると 2 (1-sin')-sin0-1=0 2sin20+sin0-1=0 因数分解して よって 002 であるから [1] sin0=-1 のとき 0=- 3 2" (sin0+1)(2sin0-1)=0 sin0=-1,1/12 [2] sino=1/12 のとき 0-1 31 = π 5 6 6 YA π H cos20-1-sin' して, sine だけの ←1 2- 22 [1] 直線 y=-1 と 円の共有点 [2] 直線 y=1/2 円の交点 を考える。 したがって 3-2 10 11 -1 5 3 6 6 0=0 (2)不等式を変形して 2π 12 +5-6 0 2 (1-cos20)+5cos0<4 2cos20-5 cos 0+2> 0 716 (cos 0-2)(2 cos 0-1)>0 1 ●単位円上の点Pの が1/12より小さくなる! な動径 OP を表すの の範囲を求める。 整理すると 因数分解して -1≤cos 0≤1 Th3 4 5 k cos 0-2<0 H よって 2 cos 0-1<0 ゆえに cos < -1 00<2mであるから << 1/3 5 ← 1 (x,y) |1|2 53

解決済み 回答数: 1
1/284