学年

教科

質問の種類

数学 高校生

これの(2)でr=0、1、2で場合分けしてると思うんですけど、なんで場合分けした各値を足しているんですか?普通場合分けの時って、答えはr=0のとき〇〇、4=1のとき〇〇みたいに書くんじゃないんですか?

次の式の展開式における,[]内に指定された項の係数を求めよ。 (1) (x+2y+3z) [x°yz] [武蔵大] (1+x+x2)[x] [愛知学院大 ] P.16 基本事項 指針 二項定理を2回用いる方針でも求められるが,多項定理を利用して求めてみよう。 解答 n! (a+b+c)" の展開式の一般項は p!q!r! a'b'c', p+q+r=n (2)上の一般項において, α=1, b=x, c=x2 とおく。 このとき,指数法則により 1.xq(x2)'=x9+2r である。 g+2r=4となる0以上の整数 (p, g, r) を求める。 (1) (x+2y+3z) の展開式の一般項は 4! 4! pigirix (2y)(3z)=(piair! 20.3)xyz ただしp+q+r=4, p≧0,g,r (a+b+c)の一般項は 4! p!q!r! a'b'c' (p+gtr=4, p≧0, q≥0, r≥0) を これら xyz の項は,p=2, g=1,r=1のときであるから 4! ・2・3=72 2!1!1! 別解 {(x+2y) +3z} の展開式において, zを含む項は C(x+2y) •3z=12(x+2y) z また, (x+2y) の展開式において,xy を含む項は Cx2.2y=6x2y よって, xyz の項の係数は 12×6=72 (2) (1+x+x2)の展開式の一般項は 二項定理を2回用いる方 針。 まず(+32) の展 開式に着目する 二項定理 8! 8! 1.x(x2)= p!g!r! *x9+2+ <(cm)=am p!q!r! ただし p+g+r=8 ①, p≥0, q≥ ≥ dp, g, rは負でない整数。 ****** p=r+4 4-2r≥0 ****** ③ ②①に代入すると p+4-2r+r=8 xの項は, g+2r=4 すなわち g=4-2r のときであり, ① ② から ここで,②g≧0 から rは0以上の整数であるから ②③から r=0 のとき r=1のとき p=5g=2 よって, 求める係数は 8! r=0, 1, 2 p=4,g=4 r=2のとき p=6,g=0 44-27205 r≤2 8! 8! + =70+168+28=266 4!4!0! 5!2!1! 6!0!2! 40!=1

回答募集中 回答数: 0
数学 高校生

(2)の解き方が分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

基本 例題 15 塗り分け問題 (1) 赤、青、黄、白の4色の絵の具で塗り分けるとき 右の図で, A, B, C, D の境目がはっきりするように, すべての部分の色が異なる場合は何通りあるか。 (4) 同じ色を2回使ってもよいが、隣り合う部分は異な 色とする場合は何通りあるか。 CHART & SOLUTION 00000 A C D B 塗り分け問題 特別な領域 (多くの領域と隣り合う, 同色可) に着目 (2)最も多くの領域と隣り合うCに着目し, C→A→B→Dの順に塗っていくことを考える。 (1) A, B, C, D の文字を1列に並べる順列の数と同じ。 答 (1) 塗り分け方の数は, 異なる4個のものを1列に並べる方 法の数に等しいから 4!=24 (通り) (2) C→A→B→Dの順に塗る。 C,A,Bは異なる色で塗るから, C→A→Bの塗り方は 4P3=24 (通り) DはCとしか隣り合わないから, C→A→B→D 4 × 3 × 2 × 3 Cの色以外の3通りの塗り方がある。パー! よって, 塗り分ける方法は全部で 24×3=72 (通り) a- Cの色を除く 2 CとAの色を除く 3 Cの色を除く ← A B C D に異なる4色を 並べる方法の数に等しい。 A, B, D の3つ Cは, の領域と隣り合う。 A とBは、2つの領域, D は1つの領域と隣り合 う。 INFORMATION (2)の別解 塗り分けに使えるのは4色。 Cは3つの領域と隣り合うから 4色と3色で塗り分け る2通りについて考えてみよう。 [1] 4色の場合 (1) から 4!=24 (通り) 2] 3色の組合せは,どの1色を除くかを考えて 4通り その3色の組に対して, C→A→Bの塗り方は 3!=6(通り) SE DはCと異なる色の2通りで塗り分けられる。 よって、3色の塗り分け方は [2]から 24140 4×6×2=48 (通り)

未解決 回答数: 1
1/500