学年

教科

質問の種類

数学 高校生

最後の答えの部分なんですけど、なんでaに5と-5が=として含まれるんですか?含まれたらこたえが四つになりませんか?

例題 重要例 120 連立2次不等式が整数解をもつ条件 000 xについての不等式x-(a+1)x+α < 0, 3x2+2x-1>0 を同時に満たす整数x がちょうど3つ存在するような定数αの値の範囲を求めよ。 指針 [摂南大〕 基本 37, 117 ①まず,不等式を解く。 不等式の左辺を見ると、2つとも因数分解ができそう。 なお,x2(a+1)x+α<0は文字αを含むから,αの値によって場合を分ける。 ②数直線を利用して、題意の3つの整数を見定めてαの条件を求める。 CHART 連立不等式 解のまとめは数直線 解答 x²-(a+1)x+a<0 を解くと a<1のとき a<x<1 a=1のとき 解なし α>1のとき 1 <x<a 3x2+2x-1>0を解くと (x-a)(x-1)<0 から ① (x+1)(3x-1)>0から x<-1, < x ...... ② 3 ① ②を同時に満たす整数xがちょうど3つ存在するの は α <1 または α>1 の場合である。 02 (1 α=1のとき, 不等式は (x-1)<0 これを満たす実数 x は 存在しない。 実数 A に対し A≧0は常に成立。 A'≦0 なら A=0 A'<0 は 不成立。 [1] α <1のとき 3つの整数xは x=-4, -3, -2 よって -5≦a-4 [2] α>1のとき 3つの整数xは x=2,3,4 [1] [2] -51-4-3-2-1 0 1 x a 3 '13 -101 2 4 x よって 4<a≦5 小 1 a 3 [1], [2] から, 求める α の値の範囲は -5≦a<-4,4<a≦5 3章 <-5<a<-4としないよ うに注意する。 a<x<-1の範囲に整数 3つが存在すればよいか ら, α=-5のとき, -5<x<-1となり条件 を満たす。 [2]のα=5のときも同 様。 13 2次不等式 不等号にを含むか含まないかに注意 上の例題の不等式が x2-(a+1)x+a≦0,3x2+2x-1≧0となると, 答えは大きく違ってく る (解答編 p.96 参照)。 イコールがつくとつかないとでは大違い!! -850 (0)=(x2) xについての2つの2次不等式 x²-2x-80,x2+(a-3)x-3a≧0 を同時に満たす整数がただ1つ存在するように, 定数 αの値の範囲を定めよ。 p.219 EX86

回答募集中 回答数: 0
数学 高校生

(2)について、なぜ解と係数の関係で作った2次方程式の解は、条件を満たす数になるのでしょうか。

-1+√51-1-√51 を2つの解とする2次方程式を1つ作れ。 2 2 和が 3. 積が3である2数を求めよ。 • ◇(1) 2次方程式の作成 2数が与えられたら,まず2数の和 積を計算する。 2 数α,βを解とする2次方程式の1つは (a+B)x+αβ=0 (x-a)(x-β)=0 *0 積 この左辺を展開すると マイナスに注意 (2)pgの2数をα βとすると a+β=p.aβ=q 解答 したがって,解と係数の関係から, 2次方程式px+g=0の2つの解が求める2炎 和積 となる。 (1)2数の和は1+√5i+-1-5i=-1. 2 2 2数の積は1+5i-1-5i_(-1)-(√5) _ 2 4 32 -1+√5i 2 -1-√5i B= 2 3 よって、 求める2次方程式は x2+x+ =0 ① これでも正解。 2 ①の両辺を2倍して 2x2+2x+3=0 係数を整数にする。 (2) 2数をαβとすると α+β=3, aβ=3 -200+ したがって,α β は2次方程式 x2-3x+3=0の2つの解で ある。この2次方程式を解いて x= 3±√3i 2 よって, 求める2数は 3+√3i 3-√3i 2 2 (和)x+(積) = 0 a+β=3, aβ=3を連立し て解くよりも早い。 2次方程式を作成する問題の答案 (1)解答の①の両辺を4倍した 4x2+4x+ 6 = 0 なども誤りではないが, 2次方程式を求める問 題では,その係数が最も簡単なものを考えるのが普通である。 (2) 上の解答では,理解しやすくするためにα, β を使ったが,実際の答案では, 「和が3,積が3である2数は2次方程式 x2-3x+3=0の解である」 としてもよい。 練習 46 (1) 次の2数を解とする2次方程式を1つ作れ。 (ア) 3, -5 (イ) 2+√5.2-√5 () 3+4i, 3-4i (2) 和と積が次のようになる2数を求めよ。 (ア)和が7. 積が3 (イ) 和が -1, 積が1

解決済み 回答数: 1
1/500