学年

教科

質問の種類

数学 高校生

⑵において x=-2で不連続にはならないのですか?

10 重要 例題 57 級数で表された関数のグラフの連続性 x x x 無限級数 x+ 1+x (1+x)2 + ++ について (1+x)-1 00000 (1)この無限級数が収束するようなxの値の範囲を求めよ。 (2)xが(1)の範囲にあるとき,この無限級数の和を f(x) とする。 関数 y=f(x) のグラフをかき, その連続性について調べよ。 a=0 または |r|<1 基本 36,56 指針 無限等比級数atar +are +.....の収束条件は a 収束するとき, 和は a = 0 なら 0, αキ 0 なら 1-r (2)まず, f(x) を求める。 次に, グラフをかいて,連続性を調べる。 なお,関数 y=f(x)の定義域は,この無限級数が収束するようなxの値の範囲[(1) で求めた範囲] である。 (1)この無限級数は,初項 x, 公 解答 比 の無限等比級数である。 1+x 収束するための条件はx=0 ■ ( 初項) = 0 ↓では ・1 O x または-1<x<1 ... ① -1<(公比)<1 ない! ・1 不等式① の解は, 右の図から x<-2,0<x 1 <y= 1 1+x のグラフと y= 1+x よって, 求めるxの値の範囲は x<-2,0≦x (2) 和について x=0のとき f(x)=0 x<-2,0<xのとき 直線 y= 1, y=-1の上 下関係に注目して解く。 なお, ① の各辺に (1+x) (0) を掛けた -(1+x)²<1+x<(1+x)² を解いてもよい。 (初) 1 - (公比) -2-10-(mil y=1+x x 連続性は定義域で考える ことに注意。 −2≦x<0 f(x)は定義されない から,この範囲で連続性 を調べても無意味である x f(x)= =1+x 1. 1- 1+x 関数 y=f(x)の定義域は 0 x<-2,0≦xで, グラフは右 の図のようになる。 よって x<-2,0<xで連続; x=0で不連続 練習 次の無限級数が収市す 91-2はちがうのか? f(r)のグラス

未解決 回答数: 1
数学 高校生

⑶にて x=-1では不連続にならないのですか? 確かにlim[x→-1+0]f(x)=f(-1)は成り立ってますけど、 その負側ではすぐに途切れているので不連続だと思いました。

基本(例題 56 関数の連続 不連続について調べる -1≦x2 とする。 次の関数の連続性について調べよ。 (1) f(x)=x|x| (2)g(x)=-1 (x-1)2 (3)h(x)= [x] ただし,[]はガウス記号。 (x+1), g(1)=0 P.97 基本事項 重要 57, 58、 指針 関数 f(x)がx=αで連続limf(x)=f(a)が成り立つ。 また, f(x) がx=αで不連続とは [1] 極限値 limf(x) が存在しない XIA [2] 極限値 limf(x) が存在するが limf(x)=f(a) XIA のいずれかが成り立つこと。 解答 x-a 関数のグラフをかくと考えやすい。 099 2章 関数の連続性 (1) x>0 のとき f(x)=x2 x<0 のとき f(x)=-x2(1),(2)多項式で表された よって limf(x)=limx2=0, x+0 x+0 limf(x) = lim(-x2)=0 x-0 x→0 0 また f(0)=0 ゆえに limf(x)=f(0) よって, x=0で連続であり -1≦x≦2で連続。 (2) limg(x)=lim =8 x→1 x-1 (x-1)² 極限値 limg(x) は存在しないから 関数は連続関数であるこ とと p.97 基本事項 1 ③ に注意。 関数の式が変わ る点 [(1) ではx=0, (2) ではx=1] における連 続性を調べる。 なお (3) では区間の端点での連続 性も調べる。 x→1 -1≦x<1,1<x≦2で連続; x=1で不連続。 (3) -1≦x< 0 のときん(x)=-1, 0≦x<1のとき h(x)=0, [x] は x を超えない最大 の整数。 1≦x<2のとき h(x)=1, h(2)=2 よって limh(x)=-1, limh(x) = 0 ゆえに, 極限値limh(x)は存在しない。 x-0 x+0 x→0 limh(x)=0, limh(x)=1 ゆえに, 極限値 limh(x) は存在しない x→1-0 x→1+0 limh(x)=1, h(2)=2 X-2-0 x→1 ゆえに lim h(x)+h(2) x2-0 よって -1≦x< 0, 0<x<1, 1 <x<2で連続 ; x = 0, 1, 2で不連続。 (1) f(x)* 4 (2) g(x) 14 0 2 x -1 0 1 1 2 X (3) h(x) 入らない 2 1 fm?= f(-1) 12 -1 スー1+0 0 1 2 -1

回答募集中 回答数: 0
1/500