学年

教科

質問の種類

数学 高校生

画像の赤線の部分で、lに代入した-1、mに代入した-3がどこから来たのかわからないので教えていただきたいです!

Example 40 ★★★★★ 2つの実数, gがある。 を初項, g を公差とする等差数列を (an を初 公差とする等差数列を {bm} とする。 いま数列{an) の第2項が a2=8 であり, 数列 {bm} の第4項がbx=14 であるとする。 このとき、 {bm に共通して現れる数を小さい順に並べて新しい等差数列 {c} を作ると、 の値は,g=1である。 また,このとき2つの数列 (am)と cmの初項は,公差はである。 また {c} の初項から第n項ま での和は,nの式で表すと 解答 an=p+(n-1)g, bm=g+(n-1)p である。 [類 13 関西学院大 ] a2=8 から p+g=8 ① b=14 から 3p+g=14 ② ①,② を解いて よって カ=3, g=15 答 an=3+5(n-1)=5n-2 bn=5+3(n-1)=3n+2 共通な項を α = bm とすると 5l-2=3m+2 また ③ ④ から 5・(−1)-2=3・(-3)+2_ 5(+1)=3(m+3) 5と3は互いに素であるから よって l=3k-1 (k≧1) したがって l+1=3k(kは整数) Cn=a3n-1=5(3n-1)-2=15n-7 ゆえに, 数列 {c} は初項 78, 公差 15 の等差数列である。 答 よって, 数列 {c}の初項から第n項までの和は 1/2n(cs+cm)=1/2n{8+(15n-7))=1/12n(15n+1) (答) [Key a=bm を満たす を求める。 Key 等差数列の和 等差数列{a} の初項か ら第n項までの和 Sn は Sn = 1/2₂n (artan)

回答募集中 回答数: 0
1/500