学年

教科

質問の種類

数学 高校生

(2)の解説がわからないので教えて欲しいです!! 特に右のページの1番上

74 第3章 図形と式 基礎問 第3章 「基礎間 できな 本書で 効率よ ■入試 取り 行い 実に ■「基 題 ■つ とし まし 精 46 軌跡(IV) 58 放物線y=x^2-2x+1 と直線 y=mx について,次の問いに 答えよ. 上の飲物線と直線が異なる2点P,Qで変わるための 囲を求めよ. (2) 線分 PQ の中点Mの座標をm で表せ nの (3)m が(1)で求めた範囲を動くとき, 点Mの軌跡を求めよ. (1) 放物線と直線の位置関係は, 連立させてyを消去した2次 式の判別式を考えます. 「異なる2点とかいてあるので, 判別式≧0 ではありません . (2) (1) 2次方程式の2解がPとQのx座標ですが, m を含んだ式にない 2解をα,Bとおいて,解と係数の関係を利用した方が計算がラクで (3)(1)において,m に範囲がついている点に注意します. (4) 解 答 y=x²-2x+1 ①y=mx ② (1)①,②より,yを消去して, x-m+2)x+1=0 .....③ ③は異なる2つの実数解をもつので, 注 a+β a+m+2 +2..... ⑤ M ( m +2 m'.1.2m) 2 (3)⑤よりm=2x2 ④に代入して,y=x(2x-2) ここで, (1)より,m<-4,0<m だから, 2x-2<-4,0<2x-2 すなわち, x<-1, 1 <x 以上のことより, 求める軌跡は放物線の一部で、 y=2x²-2x (x <-1, 1<x) 参考 M を だけの式で 表せた いつでもæに範囲がつくわけではありません. 75 たとえば, 与えられた放物線が y=x²-2x-1 であったら, 判別式 = (m+2)2 +4>0 となり, mに範囲はつきません. すなわち、この場合は軌跡のにも範囲がつかないというこ とです. ポイント軌跡が放物線のとき, 範囲はにつければよい y につける必要はない (1)がなくて, (2)から問題が始まっていたら, 自分で D>0 を作ってmの とりうる値の範囲を調べる必要があります. 判別式をDとすると,D>0 D=(m+2)2-4 であるから m²+4m>0 :. m(m+4)>0 . m<-4, 0<m (2)③の2解をαβ とすれば, P(a,ma), Q(B,mβ) とおける. このとき,M(x, y) とすれば, y=x²-2x+1 Q I=- a+B 2y= m(a+β) M 2 =mx......④ P 0 a+β=m+2 だから α 1 y=mx ここで,解と係数の関係より 演習問題 46 放物線y=x-2tz+12+4t-4 ......① がある. (1) ① が放物線y=-x+3x-2 と共有点をもつようなtの範囲 を求めよ. (2) tが(1)で求めた範囲を動くとき,①の頂点のえがく軌跡を求め

回答募集中 回答数: 0
数学 高校生

(1)なんですけど半径の差<中心間の距離<半径の和なんですけどなんでこうなるのですか??教えて欲しいです!!

問題 試に 言いま 楚問. ありま れるま 書カ 二、 まる 講』 ニーマ 原則 くか 基礎問 ( 422円の交点を通る円+85910 2円 x2+y²-2x+4y=0 …………D, r'+y'+2x=1 がある. 次の問いに答えよ. (1) ①,②は異なる2点で交わることを示せ. E+ I+ …………② (2) ① ② の交点をP, Q とするとき, 2点P, Qと点(1,0)を ある円の方程式を求めよ. (3) 直線 PQ の方程式と弦 PQ の長さを求めよ. 精講 (2) (1) 2円が異なる2点で交わる条件は 「半径の差<中心間の距離 <半径の和」 です. (IA59) 38 の考え方を用いると, 2点P Qを通る円は (x2+y²-2x+4y)+k(x2+y2+2x-1)=0 の形に表せます. Ji+ar- (-)+AV (3)2点P,Qを通る直線も (2) と同様に (x² + y² −2x+4y) + k ( x²+ y²+2x−1)=0&t © Hack と表せますが,直線を表すためには,z,yの項が消えなければならない =-1と決まります。また,円の弦の長さを求めるときは、2点間の 離の公式ではなく,点と直線の距離 (34) と三平方の定理を使います。 解答 (1) ①より (x-1)+(y+2)²=5 ②より (x+1)2+y^=2 .. 中心 (1,2),半径√5 中心(-1,0),半径 √2 中心間の距離 = √2+2°=√8 <3=2+1<√5+√2 また、√5-√2 <3-1=2<√8 .. 半径の差<中心間の距離 < 半径の和 よって, ①,②は異なる2点で交わる。 (2)2点P Q を通る円は (x2+y^2-2x+4y)+k(z2+y'+2x-1)=0 とおける.

解決済み 回答数: 1
1/500