学年

教科

質問の種類

数学 高校生

数2 式と証明 等式と不等式の証明 写真の(2)のマーカを引いたところがなんでそういう式を書けるのかわかりません。 教えてくださると助かります🙏

18 48 日24 標 例題 準 24 不等式の証明 (5) ****** 絶対値を含む不等式 次の不等式が成り立つことを証明せよ。 CHART & GUIDE 解答 |a|-|0|=|a+6|≦|a|+|01 絶対値を含む不等式 絶対値の性質 A=A', |A|≧A を利用 (a/+/6)-1a+b を変形して≧0 を示す。 不等式 PQR は, P≦Q かつ QR のこと。 2つに分けて証明する。 [1] [a+6|≦|a|+|6|の証明 [2] |a|-|6|≦|a+b|の証明... |a|≦|a+6|+16 を示す。 [1]の不等式と似ているから, [1]で証明した不等式の結果を使う。 [1] |a+b|≦|a|+|6|の証明 a+6|20|4|+|6|20 (a+102-1a+b=(a2+2|a||6|+62)-(a+2ab+62) であるから,平方の差をと =2(|ab|-ab) |ab|≧ab であるから したがって (d) 2(ab-ab) 20 |a+b=(|a|+|6|2 (+5 lat6/20,|a|+10/20 であるから lato|≧|a|+|6| [2] |a|-|6|≦|a+6| の証明 で ○ =a+b, △=-6 [1]の結果|○+△|≦|0|+|||| |a|=|(a+b)+(-6)|≦|a+6|+|-6| る方針で証明する。 ◆等号は, lab=ab すな わち ab≧0 のとき成り 立つ。このとき, a,b は同符号であるか、少な くとも一方は0である。 [2] 常に,|a|-|6|≧0 で op はないから, [1]と同じ 方針では証明できない =|a+6|+|6|-|-6|=|6| よって |a|≦|a+6|+|6| すなわち |a|-|6|≦la+b1 [1], [2] により|a|-|6|≧|a+6|≦|a|+|0|

解決済み 回答数: 1
1/63