学年

教科

質問の種類

数学 高校生

xについての二次方程式までは式を整理できたのですが、その後に「この二次方程式が実数解を持つための条件は〜」の発想にいくのが、次にこの問題を解くときに思い浮かべられる自信がありません。どういった考え方をしたら次解くときに実数解を持つ条件を思い浮かべられるようになりますか。 そ... 続きを読む

重要 例題 1222 変数関数の最大・最小 (4) 203 00000 実数x,yが x2+y2=2 を満たすとき,2x+yのとりうる値の最大値と最小値を | 求めよ。 また, そのときのx,yの値を求めよ。 [類 南山大 ] 基本 101 条件式は文字を減らす方針でいきたいが、条件式x2+y2=2から文 字を減らしても, 2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 -> 2x+y=t を y=t-2x と変形し, x2+y2=2に代入してyを消 去するとx2+(t-2x)=2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかつ える 3 3章 13 1 2次不等式 CHART 最大・最小=t とおいて、 実数解をもつ条件利用 2x+y=t とおくと y=t-2x ...... (1) 解答 これを x2+y2=2に代入すると x2+(t-2x)2=2 整理すると COPIQE このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 5x2 -4tx+t2-2=0 (2) ここで 4 D=(-2t)2-5(t2-2)=-(t2-10) D≧0 から t2-10≤0 >> 参考 実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)²≤(a²+b²)(x²+y²) [等号成立は ay=bx] この不等式に a=2,b=1 を代入することで解くこと もできる。 028- これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0 で, ② は重解 x=-- -4t 2t = 2.5 5 を もつ。 =±√10 のとき x=± 2/10 5 のとき, ② は t=±√10 5x2+4√10x+8=0 よって (√5x=2√2) 20 またはBA ①から y=± √10 (複号同順) ゆえに 5 2√2 2/10 x=± 210 よって V 10 -=± √5 5 x= y= のとき最大値10 5 5 ①からy= 10 5 2/10 √10 x=- y=- のとき最小値√10 (複号同順) また 5 5 としてもよい。

解決済み 回答数: 1
数学 高校生

数学Bの、漸化式の質問です。下の写真の、緑のペンで印を付けたnのところが、等比数列の漸化式の一般項で使われるn-1ではなく、nになっている理由を教えて頂きたいです。 通常の隣接3項間の漸化式におけるn+2とnが、n+1とn-1にずれただけで、公比をかける回数は変わらないよう... 続きを読む

のに、が 重要 例 52 確率と漸化式 (2) ... 隣接 3 項間 座標平面上で,点Pを次の規則に従って移動させる。 00000 原点を出発点としてさいころを繰り返し投げ, 点P を順次移動させるとき、自然 へだけ移動させ, a≧3 ならばy軸の正の方向へ1だけ移動させる 1個のさいころを投げ, 出た目をα とするとき, a2ならばx軸の正の方向 数nに対し、点Pが点 (n, 0)に至る確率をp" で表し, po=1とする。 (1) Pnts を Dn, Dn-1 で表せ。 D(2) pm を求めよ。 【類福井医大 基本41.51 指針 (1) Pa+1: 点Pが点 (n+1,0) に至る確率。 点Pが点(n+1,0) に到達する直前の 状態を、次の排反事象 [1], [2] に分けて 考える。 pn n-1 Pay n n+1 X pm-1 [1] 点 (n, 0)にいて1の目が出る。 Pay [2] 6 [2] 点 (n-10)にいて2の目が出る。 (2)(1) で導いた漸化式からpn を求める。 (1) P(n+1, 0) に到達するには [1] 点 (n, 0)にいて1の目が出る。 [2]点(n-1)にいて2の目が出る。 y軸方向には移動しない。 解答 の2通りの場合があり, [1], [2] の事象は互いに排反で点(n, 0), (n-1,0)に ある。 よって pn+1=- Pn+ .pn-1 ① 6 いる確率はそれぞれ Dn, pn-1 から + Pn+1 6x2-x-1=0 On- よって x=- よって Pn+1+ (2) ①45 Pust 1/1 P = 1/1 (P+ 1/3 P-3). Dn+1 1+1= | Pn = (P₁ += = = P0) · ( 1 ) 2+1+1/2 =(1/2) po=1,p= から Pn+1 pn=1 (②③)÷10から = n+1 1 n+1 3'2 (α, B) = ( ——³½³½, ½ ½); (1/2-1/3) とする。 2 n+1 ■硬貨を投げて数直線上を原点から正の向きに進む。 表が出れば1進み, 裏が出れば 2進むものとする。 このとき, ちょうど点nに到達する確率をn で表す。ただし n は自然数とする。 (1) 2以上のnについて, Pr+1 と Pr, Pn-1 との関係式を求めよ。 (2) を求めよ。 ればBと bio

解決済み 回答数: 1
数学 高校生

この問題で「tの範囲を求めること=2x+yの最大値、最小値を求めること」と言うのはわかったのですが、二つわからないところがあります。 一つ目はどうして②の式がxのニ次方程式なのですか。tは定数なのですか?ではどうしてtは定数なのでしょうか… 二つ目はニ次方程式の判別式を使っ... 続きを読む

重要 例題 122 2 変数関数の最大・最小 ( 4 ) 203 実数x,yが x+y2=2 を満たすとき,2x+yのとりうる値の最大値と最小値を | 求めよ。 また, そのときのx, yの値を求めよ。 [類 南山大 ] 基本 101 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても, 2x+yはx, yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき, tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 ← 2x+y=t を y=t-2xと変形し, x2+y2=2に代入してyを消 去するとx2+(t-2x)=2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をか CHART 最大 最小 = tとおいて、 実数解をもつ条件利用 3章 13 12次不等式 2x+y=t とおくと y=t-2x ① 解答 これをx2+y2=2に代入すると x2+(t-2x)2=2 整理すると 5x2 -4tx+t2-2=0 このxについての2次方程式 ② が実数解をもつための 条件は,②の判別式をDとすると D≧0 参考実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル (+7)=gツの不等式)。 (2) COMO (ax+by)≤(a²+b²)(x²+y²) ここで D=(-2t)2-5(2-2)=(t-10) [等号成立は ay=bx] この不等式に a=2,b=1 ト) を代入することで解くこと もできる。 D≧0 から t2-10≤0 <x これを解いて -√10 ≤t≤√10 t=±√10 のとき,D=0 で, ②は重解 x = -4t=. 2t を のとき,②は t=±√10 2.5 5 もつ。=±√10 のとき x=± 2√10 5 √10 ①から y=± (複号同順) 5 x=± 210 10 よって x= y= のとき最大値 10 5 5 x=- また、 2/10 5 10 y=-- のとき最小値√10 5x2 +4√10x+8=0 よって<A (√5x+2√2)²=0 ゆえに 2√2 2/10 =± √5 ① から y=± 5 (複号同順) 5 √10 5 としてもよい。

解決済み 回答数: 1
1/1000