学年

教科

質問の種類

数学 高校生

蛍光ペンを引いているところなのですが、どうして2.3とかが出てくるのですか? どなたかすみませんがよろしくお願いします🙇‍♀️

目標解答時間 87 難易度★ 表と裏が等確率で出るコインを最大6回まで繰り返し投げる。 以下,Zの期待値を E(Z) と表す。 (1) 裏が出たら投げるのをやめる試行をSとし, やめるときまでに投げた回数を確率変数X とする ただし, 6回投げて6回目に初めて裏が出たときと6回投げて裏が出ないときは X=6 とする。 1 P(X=1)= ア である。 Xの期待値は P(X=2) = 1 1 P(X=6)= ウエ E(X)=1.P(X=1)+2・P(X=2)+3・P(X=3) +.4・P(X=4)+5・P(X=5)+6・P(X=6).. であるが,次のように工夫することで期待値 E(X) を整理する。 1,2,3,4,5,6 に対してコインをん回投げる試行 T において 1回目からん回目まです べて表であれば1,そうでなければ0の値をとる確率変数を X とする。 P(X=1)= であり,E(X3)= オ 1 カ である。 X=1 は,試行Sにおいてはキ回目までは投げることを意味し、X=1のとき,X=7 である。 よって, X= ケ +X1+X2+....+X と表すことができ, E(X)= サ シ 2 ある。 コ シ | の解答群(同じものを繰り返し選んでもよい。) 4 ① 5 6 k また、この結果と①から 1. 1 +2.. +3・ 22 1 23 +4.. 1 24 1 +5・ ・+6・ 1 セ 26 2 とわかる。 (2)裏が2回出たら投げるのをやめることとし、やめるときまでに投げた回数を確率変数 Y とする。 ただし、1回目から5回目までに1回裏が出て6回目に裏が出るときと6回投げて裏が2回出ない ときは Y=6 とする。 Yのとる値として最小のものはタ であり P(Y= タ 1 チ P(Y=5)=ツ 1/12/30,P(Y=6)=1 テ 25 である。 (1)のE(X) と比べると,E(X) ト E (Y) である。 ト の解答群 ⑩ <

解決済み 回答数: 1
数学 高校生

(1)のところで2つ質問です。  ①【ヒント】のところに書いてある総和を出すところで波線を引いているところがわからないです。 ②最後の総和は全て足し算なのではないですか?何故かけ算なのですか?

(1) 540 の正の約数の個数を求めよ。 ただし, 1 および 540 も, 540 の約数 (久留米大*) である。さらに,これら約数の総和を求めよ。 (2) 2"5" (m, n は整数) の形の整数で100以下であるものはア個あり、 (長岡技科大) それらの総和はイである。 ヒント! (1) 540=22×33×5と素因数分解すると, 約数の個数が計算できる。 その総和は等比数列の和の積の形になる。 参考 18の約数の個数について, 0,1 0,1,2 18=20×32より, (i) 2 の指数は0,1と2通りに, (ii) 3の指数は 0,1,2と3通りに 変化する。 ∴約数の個数は2×3=6個ある。 次に,これらの約数の総和は, 2°×3°+2°×3'+2x32 {2°の系列 +2' × 3° +2' × 3' +2'×32-2′の系列 =2°(3°+3'+32) +2'(3°+3' +32 ) =(2°+2')(3°+3'+3') (キレイな形!) =(1+2)(1+3+32) =39 となる。 (1)540 を素因数分解して (0, 1, 2) (0, 1, 2, 3] (0, 1 540=22x30x50 よって, 540 の約数の個数は, 3 × 4×2= 24 さらに,これら24個の約数の総和S は, S=2° 3°.5°+2°35' . + 2° 3′.5° + 2°3'5' +2233.5°+22・3'5' なんでかけ算? これをまとめて キレイな形 S=(1+2+22) (1+3+3²+3)(1 =7×40×6=1680........ (2) 2"5" ≦100(m,n:0以上の整数 これは整数なので,m,n が負に なることはない (i)n=0のとき, 2" ・5°=2" ≤ 10 m=0,1,2,3,4,5,6 の7通 (ii) n=1のとき、2" 5' = 5.2" s • m=0,1,2,3,4の5通り () n=2のとき,"52=252" m=0,1,2の3通り 以上(i)(i)(Ⅲ)より,求める2" の形の整数で100以下のものは, 7 +5 + 3 = 15個存在する。・・・(ア) 次にこれらの総和Tは, T=5°(2°+2'+2' + ・・・ + 2° + 5'(2° + 2 ' + … + 2 + 52(2° +2'+22) =(1+2+4+8 + 16 +32 + 64 +5 (1 + 2 +4 +8 +16) + 25 · ( 1 + 2 + 4 ) = 127 + 155 + 175 =457...(イ)・

解決済み 回答数: 1
1/41