学年

教科

質問の種類

数学 高校生

ケコのところです 解き方は理解して自分で解けたのですが、解説『3枚目の写真)でQLをxとおくと合ったのですが、なぜそこをxとしたのですか?APとAQがわかっててQLだけわからないからそうしたのですか? 当たり前のことを聞いてしまってたらすみません。 どなたかすみませんがよろ... 続きを読む

第1問 (配点 20) (全問答 ) 行されたマークして △ABCの辺BC上に点L, CA 上に点M, 辺 AB上に点Nをとり,ALとCNO 交点をF.ALとBM の文点を Q. BV と CN の交点をRとするとき、 えよ。 (1) 図1のような△ABCにおいて, 四角形 APRM, 四角形 BQPN, 四角形 CRQLO 三つの四角形がそれぞれ同時に円に内接する場合があるかどうか調べよう。 ウ ア の解答群 (同じものを繰り返し選んでもよい。) ZMAP ① ZRMA ② ZNBQ ③ ZPNB ZLCR ⑤ ZQLC より CMAD ∠NBQ ∠PRQ + ∠QPR + ∠PQR = 180° CLCR 四角形 APRM が円に内接するとき, 四角形 BQPN と四角形 CRQLの二つの四角 形が両方ともそれぞれ円に内接すると仮定すると、①〜③と ア + イ + ウ =180° として答えな であるが M ア + イ + ウ < ∠BAC + ∠ABC + ∠ACB = 180° より 答えてはいけません ア + イ + ウ < 180° ③ N P MATEM となり,④と⑤は矛盾する。 Q R したがって, 四角形 APRM が円に内接するとき, 四角形 BQPN と四角形 CRQL 10. B C の二つの四角形が両方ともそれぞれ円に内接する場合はないことがわかる。 L 図1 ∠PRQ=ア 0 四角形 APRM が円に内接するならば が成り立ち、四角形BQPN が円に内接するならば ∠QPRイ 2 が成り立ち、四角形 CRQL が円に内接するならば また, 四角形 APRM と四角形BQPNがそれぞれ円に内接するとき, ることがわかる。 I であ ② ∠PQR ウ 4 が成り立つ。 .. ③ ③ (数学A 第1問は次ページに続く。 I の解答群 O AB = AC ① AB=BC AB = AM ④AC = AN 2 AC = BC (5) AM = AN (数学A 第1問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

数I データの分析について 第3四分位数が3番目だとするのが分かりません

例題11 箱 右の図は、2つの漁港A. B のある年における各月の水 揚げ量 (kg) の箱ひげ図である。 次の①~④のうち、この 箱ひげ図と矛盾するものを1つ選べ。 ただし, 漁港 A, Bとも、同じ水揚げ量の月はなかったものとする。 ① 水揚げ量の中央値は, 漁港Bより漁港Aの方が小さい。 ② 水揚げ量の範囲は、 漁港Aより漁港Bの方が大きい。 漁港A 漁港B 100 200 300 ③漁港Aで3番目に水揚げ量が多かった月の水揚げ量は400kg 以上である。 ④ 漁港Bで200kg未満の水揚げ量の月は4か月あった。 考え方 最大値、最小値,四分位数を読み取り, 正誤を判断する 正誤を判断する問題では,正確な値まで読み取る必要のない問題もある。 選択肢 ①〜④に関する必要な情報を抜き出して, 正誤を判断する。 ポイント ① 正誤を判断 → (解答) 400 500(k [類 東北文化学 ① 漁港Aの中央値 (約280kg) は漁港Bの中央値 (約305kg) より小さいから、正 ② 漁港 A, B のおおよその範囲はそれぞれ 420-100=320 (kg), 500-150=35 よって, 漁港Aより漁港Bの方が範囲が大きいから,正しい。 ③漁港Aの第3四分位数は400kg であるから, 漁港Aで3番目に水揚げ量が多 月の水揚げ量は400kg以上であり, 正しい。 ④漁港Bの第1四分位数は200kgであり、 同じ水揚げ量の月はない。 よって, 200kg未満の水揚げ量の月は3か月であるから, 矛盾する。 したがって, 矛盾するものは 4 答

回答募集中 回答数: 0
数学 高校生

解答の右側の真ん中くらいの黒の波線のところがわからないので教えてください。

実力アップ問題 138 難易度 CHECK 1 CHECK 2 CHECK 3 直角三角形 ABC は, ∠Cが直角で、 各辺の長さは整数であるとする。 辺BCの長さが3以上の素数であるとき,以下の問いに答えよ。 (1) 辺 AB, CA の長さを” を用いて表せ。 (2) tan ∠A は整数にならないことを示せ。 (千葉大) ヒント! (1) AB=c, CA = b とおくと、三平方の定理から,c=p^2+b2 となることを利用する。 (2) は,背理法を用いて証明しよう。 (1)BC=p (3以上 の素数) A ここで, tan ∠A=m (整数) と 仮定すると, 2p -=m より, p-1 ここで,AB=c, CA= b とおくと, B 三平方の定理より, 3以上の素数 c2=p2+b2 これを変形して, c-b2=p2(c, b:自然数) (c+b)(c-b)=p2 .....① ここで,c+b>c-bであり, c+b とc-bは正の整数より, ① から 2p=m(p+1)(p - 1) ......④ p の倍数 4 以上 2以上 となる。 ④の左辺はp の倍数より, ④の右辺もp の倍数となる。 しか し, p+1とp-1はp の倍数では ないので, mがp の倍数となる。 よって,m≧p ...... ⑤ m=k.p(k:正の整数)より, m≧p となるんだね。 c+b=p2 ② となる。 c-b=1 ・③ また,pは3以上の素数なので、 ②+③ より c=p2+1 2 2 ③ ③よりb=p2-1 2 2 (2)tan ∠A が整数とならないことを背 理法により示す。 tan ∠A= P B P P 2p = 2 bp2 1 P 2 p+14 P-12 ...... ・・・・⑥ となる。 以上 ⑤,⑥より,④の右辺は, m(p+1)(p-1)≧p4.2=8p となるので,これは左辺の2p に なり得ない。 よって、矛盾 ∴.tan A は整数にはならない。 ……………(終) 理法→P36

解決済み 回答数: 1
数学 高校生

解答の右側のユークリッドの互除法のところで、なぜ最初の式に406が入るのですか? 教えてください。

実力アップ問題 137 難易度 CHECK 1 CHECK2 和が406 で,最小公倍数が2660 である2つの正の整数a,b (a <b)を CHECK 3 求めよ。 (弘前大 ヒント! aとbの最大公約数を g,最小公倍数をL とおくと,a=a'g, b=b'g, L=a'b'g (a'とは互いに素)が成り立つ。ここで,ポイントは、 aとbが互いに素ならば,a' + b'と'b'も互いに素となることなんだね 頑張ろう! ga. 2つの正の整数a,b の最大公約数をg, と等しい。よって,これをユークリッ ドの互除法により求めると, 最小公倍数をL とおくと, なんで和が 2660=406×6+224 mw …① L=a'b'g はいるの? La=a'g |b=b'g が成り立つ。よって①,②より [ a+b= (a'+ b')g = 406 … |L=a'b'g=2660 406 = 224 × 1 + 182 www 224 = 182 × 1 + 42 www 182= 42 × 4 + 14 42 = 14×3 + 0 より, ただし,α′ と b'は互いに素な正の整 数より,a' + b'a'b' も互いに素で ある。 最大公約数g 最大公約数 g = 14 となるので ③ ④ の両辺を g で割ると, もし,a' + b' と 'b' が、 1以外の素数 pを公約数としてもつものとすると, a'+ b'=29 (10+19) a'b'=190 ...3' (= 10×19) ......' Ja+b=mp a'b' = np となり, 実力アップ問題136で示した通り, a と6' は,p を公約数にもつので、矛盾 する。 また, a' + b' と a'b' が1以外の合成数 (たとえば、pg やなど...)をもっ したとしても同様に矛盾が導ける。 よって、③、④より, aとbの最大公 数g は, 2660 と 406 の最大公約数 ここで, a<bより,α′ <b' よって,③', ④' より α' = 10,6′=19 以上を① に代入して、求める a, b の 値は次のようになる。 a=10×14=140 b=19×14=266 ・・(答)

解決済み 回答数: 1
数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0
1/121