学年

教科

質問の種類

数学 高校生

どうやって直角三角形の比が求まるのかわかりません。角度はわかっていませんよねぇ。?

例題 14 力のつりあい 右図のように、重さ60Nのおもりを糸1と2を用いて天井か らつるした。 (1)糸1がおもりを引く張力の大きさ Ti 〔N〕 を求めよ。 (2)糸2がおもりを引く張力の大きさ T2 〔N〕 を求めよ。 糸 1 解答 (1)T1 = 48N (2) T2 = 36N 50cm 40cm 糸2 30cm おもり 60 N 力のつりあいの基本プロセス Process プロセス 0 直角三角形の 辺の比 Ti 35 -T2 AT2 35 T 60N 45 ・水平方向に力を分解する プロセス 2 鉛直方向と水平方向について, 力のつりあいの式をたてる プロセス 3 連立方程式を解き、 求めたい物理 を求める プロセス 1 物体にはたらく力をすべて図示し, 鉛直・ 解説 (1) プロセス (2) 物体にはたらく力をすべて図示し, 鉛直・水平方向に力を分解する プロセス 2 鉛直方向と水平方向について, 力のつりあいの式をたてる 別解 三角形の辺の比で解く。 3力のつりあいを図で示すと, 合力、 2つの張力の合力 T1 鉛直方向の力のつりあいの式より T2 T₁ T₁+ T₂ = 60 ...... 60 N 水平方向の力のつりあいの式より 60N T₂ 直角三角形の 5:4: プロセス 3 連立方程式を解き, 求めたい物理量 を求める ① ②を連立させて解くと, T=48〔N〕,T2=36〔N〕 圈 T = 48N T2=36N 直角三角形の辺の比5:43 さの比に等しい。 60:T1:T2=5:4:3 よってT = 48 〔N〕, T2=

解決済み 回答数: 1
物理 高校生

⑵の解説をお願いします。🙇 何故1:2√3が出てきたのかよくわかりません。 お手数ですが、よろしくお願いします

基本例題 2 速度の合成 4,5,6 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船で 移動する。 2.0m/s (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 〔S〕, t2 〔s] をそれぞれ求めよ。 72m B A 2.0m/s 60m (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0 の値を求めよ。 (3)(2), 川幅60m を横切るのに要する時間 t [s] を求めよ。 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが, 川の流れと垂直になればよい。 解答 (1) 上りのときの岸に対する船の速度は BAの向きに 4.0+(-2.0)=2.0 72 注 川を横切る船は, へさきの向きとは 異なる向きに進む。 Q R 60° m/s だから ム=- =36 s 2.0 下りのときの岸に対する船の速度は ABの向きに 4.0+2.0=6.0m/s 72 (3) 合成速度の大きさを v [m/s] とすると, 4.0m/s v 60% 直角三角形の辺の比より P2.0m/s だから = =12s v=2.0x√3m/s 6.0 (2) 船が川の流れに対して直角に進むの で, 右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで, △PQR は辺の比が1:23 の直 角三角形である。 よって0=60° ここで,3=1.73 として t=10×1.73=17.3≒17s 注 √3=1.732・・・ や √2 =1414… など の値は覚えておこう。 この速さで60mの距離を進むので t=- 60 2.0x3 60×3 2.0×3 =10√3s

解決済み 回答数: 1
数学 高校生

数A 三角形の性質 三角形の比、五心 この問題の赤く囲った部分と、波線を引いた部分がなんでそう書けるのかわかりません。教えてくださると嬉しいです!

460 基本 79 三角円,心 00000 次のこと △ABCの∠B,Cの外角の二等分線の交点をIとする。 このとき、 を証明せよ。 (1) Iを中心として,辺BC および辺 AB, AC の延長に接する円が存在する。 (2) ZAの二等分線は,点Ⅰ を通る。 指針 (1)点Pが∠AOBの二等分線上にある (類広島修道大 I から, 辺 BC および辺 AB AC の延長にそれぞれ垂線 IP, IQ IR を下ろし、これ ⇔点Pが∠AOB の2辺 OA, OB から等距離にあることを利用する。 らの線分の長さが等しくなることを示す。 (2) 言い換えると 「∠B, ∠Cの外角の二等分線と ∠Aの二等分線は1点で交わる ということである。 よって、 点Iが∠QARの2辺 AQ AR から等距離にあることをいえばよい。 なお, (1) 円を △ABC の 傍接円 といい, 点Ⅰを頂角 A内の傍心という。 Iから,辺BC および辺 AB, AC の延長にそれぞれ垂線 解答 IP IQ IR を下ろす。 (1) IB は ∠PBQ の二等分線であるから ICは∠PCRの二等分線であるから よって IP=IQ=IR なぜこう 1P=IQ> IP=IR 3 B Q HA 基本 △ABCに 3AB+A 指針 解答 また, IP⊥BC, IQ LAB, IRICA であるから, I を中 心として,辺BC および辺 AB, AC の延長に接する円 が存在する。 (2)(1) より, IQ=IR であるから, 点Iは∠QARの2辺 AQ, AR から等距離にある。 ゆえに,点Iは QAR の二等分線上にある。 したがって, ∠Aの二等分線は, 点を通る。 冒榭 傍心・傍接円 [定理] 三角形の1つの頂点における内角の二等分線と、他の2つ 検討 の頂点における外角の二等分線は1点で交わる。 この点を1つの頂角内の) 傍心という。 また、 三角形の傍心を中 心として1辺と他の2辺の延長に接する円が存在する。 この円を, その三角形の傍接円という。 1つの三角形において, 傍心と傍接円は3つずつある。 なお,これまでに学習してきた三角形における外心, 内心、重心、垂 心と傍心を合わせて,三角形の五心という。 B

解決済み 回答数: 1
数学 高校生

数A 図形の性質 三角形の比、五心 この問題の2番の赤線の部分がなんでこうなるのかわかりません。教えてくださると助かります🙏

454 基本 例題 73 三角形の外心と角の大きさ (2) 10000 (1) A 右の図の角 α, βを求めよ。 △ABCの外心を0とするとき, 20 130° B a C 20°- p.452 基本事項 B C B 0 E 指針 三角形の外心 ****** 3辺の垂直二等分線の交点 → 等しい線分 OA=OB=OC=(外接円の半径)に注目して求める。 図をかいて, 長さの等しい線分や等しい角にどんどん印をつけていくとよい。 CHART 三角形の外心 等しい線分に注目 (1) OA=OB であるから ∠OAB= ∠OBA=20° ∠OAC = 50° A /70° 解答 ゆえに 20° よって 0 α=∠OAC=50° B B また, OB=OC であるから ∠OBC = ∠0CB=β ゆえに よって B=20° 20°+70°+50°+2β=180° (2)∠A=180°(30°+20°)=130°.... OA = OB=OC であるから ZOAB= ∠OBA, ∠OAC = ∠OCA, よって ∠OBC = ∠OCB=α ①②から ゆえに また ∠A= ∠OAB + ∠OAC = ∠OBA + ZOCA =(a+30°)+(a+20°) =2α+50° 2a+50°=130° α=40° ② β=180°-2×40°=100° a C ① A C B 指針 の方 △OAB は二等辺三角形 <指針_ の方針 △OBC は二等辺三角 △ABCの内角の和。 別解 (2) BA, ACに対 する中心角と円周角の関係 から ZBOA=22BCA=4 ZAOC=22 ABC=6 ゆえに B=∠BOA+∠AOC= また a=. (180°-100°)=4 このように, かくれた外 円を見つけ、円周角の定 を利用してもよい。 (1)の βも同様にして求められ

解決済み 回答数: 1