学年

教科

質問の種類

物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 高校生

(2)についてです なぜ(1)でつくった式の➀か②を代入したら及ぼし合う力の大きさが求められるのかわかりません どなたか教えていただけると幸いです  よろしくお願いします

第Ⅰ章 運動とエネルギー 基本例題11 接触した2物体の運動 基本問題 ma 3kg 2kg B 水平でなめらかな机の上に, 質量がそれぞれ2.0kg, 3.0kgの物体A, B を接触させて置く。 A を右向きに 20N の力で押し続けるとき, 次の各問に答えよ。 (1) A, B の加速度の大きさはいくらか。 (2) A, B の間でおよぼしあう力の大きさはいくらか。 ■指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から、2つの物体 は,大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て、 連立させて求める。 ■解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 f 20N 向の力は、図のようになる。 運動する向きを正 とし, A, B の加速度をα 〔m/s2] とすると, そ れぞれの運動方程式は, A: 2.0×α=20-F ... ① B:3.0 xa=F ... ② 式①,② から, a=4.0m/s2 (2) (1)の結果を式 ② に代入すると, 3.0×4.0 =F F=12N m B Point F[N] [F[N] [a [m/s2] A 20N A,Bをまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20となり, αが 求められる。 しかし, F を求めるためには,物 体ごとに運動方程式を立てる必要がある。 P= 基本例題12 連結された物体の運動 ◆基本問題 88, 92

解決済み 回答数: 1
物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
1/43