学年

教科

質問の種類

物理 高校生

こういう記述系のことをちゃんと書くことが苦手なのですが 具体的に押さえておくべきポイントとかありますか?

593. 水素原子の 解答 (1) 解説を参照 (2) 6.6×10-7m 指針 電子がより低いエネルギー準位に遷移するとき、準位間のエネ ルギー差に相当するエネルギーをもつ光子が放出される。 このとき,準 位間のエネルギー差が大きいほど, 放出される光子の波長は短い。波長 の長短とエネルギーの大小を関連させて考える。 (2) では, 与えられた式, 404 12/12 (1111) を用いる。 =R 12 222 n n 解説 (1) エネルギー 準位の高いところから低 いところに電子が遷移す るとき, 準位間のエネル ギー差に相当するエネル ギーをもつ光子が放出さ れる。 F は, 最も波長が 短い(エネルギーが大き い) 系列に属しており, この系列は,準位間のエ ネルギー差が最も大きい 系列である。したがって,電子が遷移した後のエネルギー準位は最も 低く,その量子数はn'=1である (図)。 また,F は,その系列の中では最も波長が長く、エネルギーが小さい。 これから,遷移する前のエネルギー準位の量子数は, n' = 1のエネル ギー準位との差が最も小さいn=2である。 量子数2のエネルギー準 位から量子数1のエネルギー準位への遷移による電磁波である。 (2) D, E は, 波長が2番目に短い系列に属しており,この系列は, 準 位間のエネルギー差が2番目に大きい系列である。 したがって, 電子 が遷移した後のエネルギー準位の量子数は, n'=2である(図)。 D は, その系列の中で最も波長が長く, エネルギーが小さいので, 量子数 n=3のエネルギー準位から量子数n'=2のエネルギー準位への遷移 によるものである。 Eは, Dの次に波長が長いので,n=4からn'=2 へのエネルギー準位間の遷移によるものである。 波長 エネルギー D E B 各系列で,準位間の エネルギー差が小さ い一部の遷移を示す。 FC 量子数 ∞ 与えられた式, 1/1=R ( 17/11/12 ) を用いると,Eの輝線の光の波長 n²

回答募集中 回答数: 0
物理 高校生

【途中計算】どうやっても答えが合いません。何が違うんですか?丸しちゃってるのは間違えて丸つけちゃいました。どなたか教えてください!

165 きさをv[m/s] とすると, 力学的エネル ギー保存の法則より, 無限遠点を万有引力による位置エネル ギーの基準点として, ① ② より G, M を消去して、 ひ= +(-G Mm) = 1/2 mx 0 + (-G_Mm R+3RT mv² + 2² ≒9.7×10°[m/s] 2 (2) 無限遠点まで到達すれば、地球の重力は及ばなくなる。無 限遠点での万有引力による位置エネルギーはOLだから, 求 める初速度の大きさを〔m/s〕 とすると, (1) と同様に考えて, 3gR 2 /3×9.8 x (6.4×10°) 1/2 mv ² + ( - G Mm) = 1/2 m² ²) = 1/2m x 0² +0 R ③より,G, M を消去して び =√2gR=√2×9.8 x (6.4×10) = √22 ×7²×82 × 104 = 1.12×10=1.1×10^[m/s] ゆえに, v2 (3) 2GM 72 1^2 解説 (1) ケプラーの第2法則(面積速度一定の法則)より, 一元 r1 1/1/nor = 7/1/2 12 (2) 惑星の質量をmとすると, 力学的エネルギー保存の法則 より 無限遠点を万有引力による位置エネルギーの基準点と して, 1/2 mv ² + ( - G 2 ひ (2) vi²+2GM = 202 ゆえに, v2 Mm/ 12 u2+2GM (11) (p<0は不適) 2 (3) (1)2)の結果より, v2 を消去すると, -(-GMm) 1 = 2 mv₂² + -(-6 ・G 11 20₁= √0₁² + 2GM ( + 2 = 1 ) 12 12 ri (ritr₂) mv² + 2 =一定 165) セ (1) 面積 星を結ぶ 向と惑星 角が0の場 (面積 0=90° ri (面積 THE V₁ = 12 両辺2 整理す (r₁² - r₂²) 1₁ 1₂ = (n+1₂) よって

解決済み 回答数: 1