学年

教科

質問の種類

数学 高校生

数1A標準問題精巧からの問題 この問題でα=-1を求めた後にpとqの連立方程式を解くのですが、解説とは違ってp=q-1 (解説ではq=p+1とおいている)とおいた時に、p^2=4)よりp=±2がでてきます。なぜこの時pが+2になってはいけないのか解説できないでしょうか。

02/19212/31 標問 28 共通解 0 の方程式 x+px+g=0 x²-px-q=0 について,次の条件(a), (b), (c)が成立している (a) g≠0 である (b) ① ② は共通の解αをもつ (c) ②は重解をもつ このとき, α, p, gの値を求めよ. ・精講 2つの方程式が共通な解をもつとい う設定もときどきあります. 解法のプロセス 共通解をもつ このようなときには, 共通解をα とおく のが常套手段です。 本間の場合, 1, ②は共通の解αをもつので a³+pa+q=0 a2-pa-g=0 が成り立ちます。 ↓ 共通解をαとおく. D= 67 (工学院大) ······ 3 ←x=α を ①に代入する x=α を ②に代入する 後は、この2つの式を連立します。 当然の事ですが、 連立する際には, 式の形をよ く見て、いじってみるより他に方法がありません. 上の③ ④の場合なら, ぜひ2式を加えてみま しょう.3+α²=0 というとても有難い式が得 られます. 解答 ①,②が共通の解αをもつ ((b)) ので °+pa+g=0 a²-pa-q=0 ③ + ④ より a³ +α²=0 よって, a²(a+1)=0 1012/15 28

解決済み 回答数: 1
数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0
1/12