学年

教科

質問の種類

数学 高校生

次の問題で青いところがよく分からないのですがどなたか解説お願いします🙇‍♂️

xの方程式 4+ (a+1)2x +1 +α+ 7 = 0 が異なる2つの正の解をもつよう な定数αの値の範囲を求めよ。 (ReAction 文字を置き換えたときは、 その文字の範囲を考えよ 例題177) 思考プロセス t=2^ とおく 4*+(a+1)2x+1+α+ 7 = 0 が 異なる2つの正の解をもつ t+2(a+1)t +α+ 7 = 0 が どのような解をもつか? 対応を考える 1つのtの値に1つのxの値が対応 例題179 との違い... f(t) =αの形にすると, 式が複雑になることに注意。 ... 解 4% + (a+1)2+1+α+7= 0 ・・・ ① とおく。 例題 2x = 174 = t とおくと, x > 0 より t>1であり, ① は t + 2 (a + 1)t +α+ 7 = 0 ... ② ここで, t = 2 を満たすx は, t>1であるtの値1つに 対して x>0であるxの値1つが存在する。 よって, xの方程式 ① が異なる2つの正の解をもつのは, tの2次方程式②が1より大きい異なる2つの解をもつ ときである。 y y=f(t)| 2にそろえ, 2 = t とおく。 y t=2* IA -(a+1) 2次方程式の解と係数の 関係 f(t) = f+2(a+1)t + α +7 とおくと, y=f(t) のグラフがt軸と t>1の範 囲で2点で交わるのは,次の [1]~[3] を満たすときである。 ○ 1 [1] f(t) = 0 の判別式をDとすると D> 0 D = (a+1)-(a+7) = a + α-6 4 +α-6>0より よって a <-3, 2 <a (a+3) (a-2) > 0 ③ [2] y=f(t)の軸が t>1の部分にある。 y=f(t) の軸は t = -(a+1) であるから -(a+1)>1 よって a<-2 [3] f(1) > 0 であるから f (1) = 3a+10 > 0 10 よって a> - ..⑤ 3 a+β = -2(a+1) aẞ = a+7 を利用して 判別式 D0 (a-1)+(-1)>0 (a-1)(-1)>0 からαの値の範囲を求め てもよい。 ② を t°+2t+7 = α(−2t-1) と分離して, y = t + 2t + 7 とy=α(-2t-1) が t>1で異なる2つの共 有点をもつようなαの値 の範囲を求めてもよい。 ⑤ より, 求めるαの値の範囲は 10 <a<-3 3 10 3 3 -2 2

解決済み 回答数: 1
数学 高校生

この問題の(2)について質問です。sinθ=kを満たすθの値が2個存在することは分かったのですがなぜそこから③と②が2点で交わり、また、2点で交わったら4個の解を持つのかが分かりません💦なぜ2点しか交わってないのに4個解を持つのですか?どなたか教えて欲しいです🙇🏻‍♀️

例題118 20 三角比の2次方程式の解の個数 ついて、 **** 0の方程式 2cos'0+sin0+a-3=0 •••••• に 180°とする. (1) ① が解をもつための定数αの値の範囲を求めよ. (2) ①が異なる4個の解をもつときの定数αの値の範囲を求めよ. 考え方例題 87 (p.164~165) の関連問題 「解答 (1) sind=t とおくと, 1 は, 21-12) +t+α-3=0 より 定数を分離して 直線 y=a と放物線y=2t+10t) の共有点をみるとよい。 (2) 0°≦0≦180°のとき sind=t (0≦t<1) となる0は1つのに対して2個あるこ とに注意する. (sin0=t=1のときは 0=90°の1つのみ ) (1) sin0=t とおくと, 1 は, 21-t2)+t+a-3=0 より。 a=2t-t+1 ……①' 0°≦0≦180°のとき, 0≦sin0≦1より, 0≦t≦1 y=2t²-t+1, sin'0+cos20=1より, cos20=1-sin'0 ......(2) とおくと, 定数αを分離する. したがって, y=a ②と③のグラフが, 0≦t≦1 において共有点をもつ. YA 2 ③より, y=2t2-t+1 y=a ①'の解は, ②と③のグ ラフの共有点の座標 t=1 のとき y=2 t=0 のとき y=1 =2(1 − 1)²+1787 よって, 右の図より, ≦a≦2 (2)180°のとき, sin0=k(0≦k < 1)を満た すりの値は2個存在する. したがって、条件を満た すとき、③のグラフの 78 0 11 1 42 sin0=1 を満たす 0は 0=90°の1つのみ YA YA y=k -1 点 (1,2)を除いた部分と ② のグラフが異なる2点で 交わる. -1 XC よって, (1)の図より, 7 <as1 ocus 1 1 x 0≦t<1 において ②と ③が異なる2点で交わる ⇔ ① が 0≦t<1 に 異なる2個の解をもつ ⇔ ①が異なる4個の 解をもつ 方程式f(t)=aではのグラフの共有点をみよ

解決済み 回答数: 1
数学 高校生

解説の意味があまりよく分からず 2枚目の条件で考えていきたいのですが、なぜ成り立たないのでしょうか よろしくお願いします!

基本 例題 125 2次方程式の解と数の大小 (1) 00000 2次方程式x2-2(a+1)x+3a=0が,-1≦x≦3 の範囲に異なる2つの実数解を もつような定数αの値の範囲を求めよ。 [類 東北大 ] 基本 123 124 重要 127 指針 p.192, 194 で学習した放物線とx軸の共有点の位置の関係は、そのまま2次方程式の解 と数の大小の問題に適用することができる。 すなわち、f(x)=x2-2(a+1)x+3α として 2次方程式(x)=0が-1≦x≦3で異なる2つの実数解をもつ ⇔放物線y=f(x) がx軸の1≦x≦3の部分と, 異なる2点で交わる したがって D>0, -1<軸<3, f-1030で解決。 CHART 2次方程式の解と数の大小 グラフ利用 D, 軸, f (k) に着目 解答 この方程式の判別式をDとし, f(x)=x2-2(a+1)x+3a とす る。 方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は, y=f(x) のグラフがx軸の-1≦x≦3 の部分と、異なる2点で交わることである。 -1<軸 <3 yA + したがって、次の [1]~[4] が同時に成り立つ。 [1] D > 0 [2] -1<軸<3 [3] f(-1)≥0 [4] f(3)≥0 [1] 101=(-(a+1)-1・3a=a-a+1=(a-1/2)+12/ よって, D>0は常に成り立つ。 ...... [2] 軸は直線x=α+1で, 軸について (*) -1<a+1<3 すなわち -2<a<2 ...... ① [3] f(-1)≧0から (−1)-2(a+1) (-1)+3a≧0 3 ゆえに 5a+30 すなわち a≧! ****.. 5 [4] f(3) 0 から 32-2(a+1) ・3+3a≧0 012 ゆ -3a+3≥0 すなわち a≦1. ③ ① ② ③ の共通範囲を求めて 3 ≤a≤1 5 注意 [1]の(*)のように、αの値に関係なく、常に成り立つ条件もある。 a+1 -1 3 x

解決済み 回答数: 1