学年

教科

質問の種類

数学 高校生

この問題でグラフを書くとなっているのですが 3次関数のグラフって書けますか?だいたいって感じですか? 微分してもうまくいかなくて💦 簡単なグラフだったらすみません、、

0000 広めよ。 めよ。 (2)東京電機大 245 246 重要 257 係系に注意 YA 2 151 BA 基本 251 3次曲線と接線の間の面積 「もの面積Sを求めよ。 393 00000 曲線y=x-5x2+2x+6とその曲線上の点(3, -6) における接線で囲まれた図 | 指針 面積を求める方針は 1 グラフをかく ・基本 248 250 重要 252 2 積分区間の決定 ③上下関係に注意 また、積分の計算においては,次のことを利用するとよい。 本間では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 3次曲線y=f(x)(x3の係数がα) と直線y=g(x) がx=αで接するとき、等式 f(x)-g(x)=a(x-a)(x-β) が成り立つ。 y=3x²-10x+2であるから, 接線 の方程式は 解答 ERUT SU (-6)=(3・32-10・3+2)(x-3) 曲線 y=f(x) 上の点 (α, f(a)) における接線 の方程式は y-f(a) f'(a)(x-a) 0 すなわち y=-x-3 3 0 x 2 線の概形について _342 参照。 ここで 値を求める必要は この接線と曲線の共有点のx座標 は,x-5x2+2x+6=-x-3の解 である。 -6 これからx-5x2+3x+9=0(*) ゆえに (x-3)(x+1)=0 よって x=3,2-10 y=x-4xにつ =x(x+2)(x-2) 由との交点のx座 x=0, ±2 線 y=3x2 は原点 する, 下に凸の放 したがって図から,求める面積は S={(x-5x2+2x+6)-(-x-3)}dx =S(x-3)(x+1)dx 左辺が (x-3) を因数に もつことに注意して因数 分解。 1-5 3 93 3-6 -9 1 -2 -3 23 1 33 03 1 1 0 ( 7 7章 回新 =S,(x-3)"{(x-3)+4}dx=S{(x-3)"'+4(x-3)")dx(xa)(x-3) x- 4 13 313 -3) 3- +4 3 -1 -64+- == 256 64 3 = =(x-2)^{(x-2)-(B-α)} 3 f(x-a) dx= (x-a)*+1 n+1 +C m 積

解決済み 回答数: 1
数学 高校生

こういう問題で両辺を🟰でつなげて Xで割って判別式を用いるのはだめなんですか?

332 重要 例題 208 2曲線が接する条件 解答 00000 2曲線 y=x-2x+1とy=x2+2ax+1 が接するとき, 定数αの値を求めよ。 また、その接点における共通の接線の方程式を求めよ。 指針 「2曲線が接する」 とは, 2曲線が1点を共有し,かつ, 共有点 における接線が一致することである (この共有点を2曲線の接 点という)。 2曲線y=f(x),y=g(x)がx=pの点で接するための条件は 接点を共有する f(b)=g(b) 〔接線の傾きが一致する f(b)=g' (b) f(x)=x-2x+1,g(x)=x2+2ax+1 とすると f'(x)=3x2-2, g'(x) = 2x+2a 2曲線がx=pの点で接するための条件は 基本20420 △判別式は 使える EXE ② 130 曲線 つし の方 ③ 131 座 の 2次方程式 132 E Af(p)=g(p) よって ②から 2a=3p2-2p-2 f(p)=g(p), f'(p)=g'(p) p3-2p+1=p2+2ap+1 ① 32-2=2p+2a 2. (3) 条件 f'(p)=g'(p) 接点を共有する 接線の傾きがー これを①に代入して p3-2p+1=p²+(3p²-2p-2)p+1 致する条件 αを消去する。 ゆえに p²(2p-1)=0 よって p=0, 2 9 ③から =0のときa=-1,=123のとき a=- 8 133 曲線y=f(x) 上の点 x=pにおける接線の方程式は y-(p³-2p+1)=(3p²-2)(x-p) グラフは,次のようにな 0=(S-) る。 すなわち y=(3p2-2)x-2p³+1. ゆえに, 求める接線の方程式 は a=-1(p=0)のとき a=-1のとき +a=1のとき 134 yy=f(x) ya `y=f(x)/ (1- y=-2x+1 a=- 9 11/12 (11/12) のとき y=-2x+4 5 3 10/10 ty=g(x) 羽 (1) 2曲 0 1 3-4- x 0 18 1 1 12 y=gl 117 HIN 共通な

解決済み 回答数: 3
数学 高校生

調和級数の発散することについての証明の問題です。 ⑵でやりたいことは、Snがm/2+1より大きいから、右辺発散する→左辺の級数も発散するみたいにしたいからなのは分かります。n>=2^nと書くのではなく、nを2^nにおきかえるとと書いたらだめなんですか?

重要 例題 (1) すべての自然数nに対して、 (2) 無限級数1+1/2/2 1 3 k=1 k 1 n 45 無限級数1/n が発散することの証明 2 n 1/12 172 +1が成り立つことを証明せよ。 77 000 + +......+ -+...... は発散することを証明せよ。 基本 34. 重要 44 はさみう 分の公比) (1)数学的帰納法によって証明する。 (2) 数列 列{1} は0に収束するから、p.63 基本例題 34のように、p.61 基本事項2② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 2 とすると = ここで,m→∞のときn→∞となる。 2章 無限級数 [1] n=1のとき ① とする。 21 k=1k 数学II) =0 Crab とする。 k=1 (1)= +1 ...... 解答 的帰納法を利 も考えられる カード の計算 = 1+1/28-1/3+1 よって、 ① は成り立つ。 [2]n=m(m は自然数) のとき,①が成り立つと仮定すると1/21 このとき 2m+1 2m+1 1 + k=1 k k=1 k k=2+1k -xn -x ≥ -nx" (+1)+2+1+2+2 1 ++ 2m+1 x)S 1 m +1+ 1 + x" (1-x) 2 2m+1 2+2 +::::+ 2m+2m -x m 1 m+1 <2m+1=2".2=2+2" 1 ・+1+ •2m +1 2 2m+1 2 2m+k 2m+2m 2m+1 n+1) 2 ="+nx+1 (2)=21/2とおく。2" とすると, (1) から k →∞のときn→∞で ここで,m→ m 2 よって, n=m+1のときにも①は成り立つ。 (k=1, 2,..., 2"-1) [1], [2] から, すべての自然数nについて ① は成り立つ。 2m 1 m ・+1 k=1 k 2 →∞ lim +1=8 limSn=∞ 118 里 き、 したがっては発散する。 an≦bn liman=∞⇒limbn=∞ (p.343②) →∞ 8122 n=1n なら amil 無限級数1/n”の収束・発散について 数列{a} が 0 に収束しなければ,無限級数 2α7 は発散するが (p.61 基本事項2②), こ 検討 80 n=1 の逆は成立しない。 上の (2) においてlim=0であることから,このことが確認できる。 U 00+u n なお,2は>1のとき収束, p≦1のとき発散することが知られている。 (S) n=1 n' 二大] 練習 80 ④ 45 上の例題の結果を用いて,無限級数 は発散することを示せ。 p.81 EX 32 n=1 31\

解決済み 回答数: 1
数学 高校生

(4)について質問です。なぜ8C4も2!で割るのですか?2人のグループを区別するから4C2だけを割るのではないのですか?私は2枚目の写真のように計算してしまっていたのですがどなたか教えて欲しいです🙇🏻‍♀️

176 8人を次の3つのグループに分ける方法は何通りあるか (1) 4人, 1人,3人のグループに分ける. (2) 2人ずつ、4つのグループ, A, B, C, D に分ける. (3)2人ずつ、4つのグループに分ける. (4) 4人 2人、2人の3つのグループに分ける。 (1) 8人から4人を選ぶ選び方はC 通り 残りの4人から1人を選ぶ選び方は, 4通り よって, 8C4X4C1= 8.7.6.5 4・3・2・1 ×4=280 (通り) C2通り (2)8人からAに入る2人の選び方は. 残りの6人からBに入る2人の選び方は, C2通り 残りの4人からCに入る2人の選び方は, 4C2通り よって, 8C2X6C2X4C2= 2.7 × 6.5 4.3 -X- -=2520 (通り) 2・12・12・1 (3)4つのグループを A, B, C, D の区別がある部屋に 入れると考えると,入れ方は, 4!=4・3・2・1=24 (通り) .010KEM したがって, 求めるグループの分け方をx通りとする と (2)より. x×4!=gC2X6C2×4C2 x= 8C2X6C2X4C2 2520 4! 24 = =105(通り) (4) 4人のグループをA, 2人のグループを B, C とすると, 8人からAに入る4人の選び方は, 残りの4人からBに入る2人の選び方は, OFI BC4通り C2通り 残りの2人はCに入るが、 実際はBとCは区別をしない. よって, C4X4C2-210 (G)) 2! (通り) e+a

解決済み 回答数: 1