学年

教科

質問の種類

数学 高校生

(2)の問題なんですが、3枚目の自分で解いた解答のやり方が解説にのっていないので、3枚目の私の解答はどこから間違っているか教えてくださるとありがたいです。宜しくお願いいたします🙇

B1-68 (86) 第1章 数 列 例 B1.41 隣接3項間の漸化式(1) 考え方 次のように定義される数列{an} の一般項 am を求めよ。 (1) a=1, a2=2, an 2-2an+1-150=0 (2) a1=3, a2=5, an+2-30m+1+2a=0 (A) 特性方程式の解α, β が α β となる場合 (p. B1-67) である. (1) An+2-2+1-150=0.・・・ ① が ax +2aaμ+1=βan+1 aan) .....② たとする. ②より, an+2-(a+β)an++αβam= 0 |a=5 [α = -3 これより, α+β=2, aβ=-15 だから, lβ=5 または \B=-3 よって、②より 解答 とも Jax+2+3am+1=5 (an+1+3a) lan+2-5an+1=-3(an+1-5am) これより,一般項 α を求めればよい. (2)(A) aβにおいて,とくに α=1 となる特別な場合である。 つまり, an+2-3a+1+2a=0 は, an+2-An+1=B(An+1-an) となり, 数列{ant-am} は {an} の階差数列である。 mi (1)と同様に解くこともできるが,ここでは階差数列の 考え方を使って解いてみよう. ~20x150=0 (1) authen より となる. ......① an+2+3an+1=5 (an+1+3an) lan+2-50+1=-3 (a+1-5a) ②より, 数列 {am+1+3am} は, ③ {a} の階 {anta ① より,-2F wwww (x+3)(x-5)= よって, x=-1 α=-3,β=5 α=5,β=-3 {an+1+3a 初項 a2+3a1=2+3・1=5 公比 5 の等比数列であるから, an+1+3a=5・5"'=5" …④ a2+3a」(n=10) ③より, 数列 {an+1-5am} は, 初項 a2-5a=2-5・1=-3 公比3 の等比数列であるから, a,+1-5a= (-3)(-3)"'=(-3)"...... ⑤ ④ ⑤ より 3a-(-5am)=5"-(-3)" 8a=5"-(-3)" ④ ⑤から 去する. よって、 求める一般項 α は, _5"-(-3)" an= 8

解決済み 回答数: 1
数学 高校生

(2)数学的帰納法を使うとどういう回答になりますか?

基礎問 45 はさみうちの原理(Ⅱ) 数列{an} は 0<a1 <3, an+1=1+√1+an (n=1, 2, 3, ... をみたす ものとする。このとき,次の(1),(2),(3)を示せ. (1) n=1,2,3, ・・・ に対して, 0<an<3 よって, n≧2 のとき, 3-a.<(3-an-)<()(-a)<<()(3-a) 78 79 \nl (2) n=1,2,3, に対して, 3-an≦ (3) liman=3 精講 11-0 (1) 漸化式から一般項を求めないで数列の性質を知りたいときま ず数学的帰納法と考えて間違いありません。 (B (2)これも (1) と同様に帰納法で示すこともできますが、 「台」を 「=」としてみると,等比数列の一般項の公式の形になっています。 (3)44 のポイントの形になっています。ニオイプンプンというところでしょう。 解答 (1)0<a<3………①を数学的帰納法で示す. mir (i) n=1 のとき, 条件より 0<a< 3 だから, ① は成りたつ. (ii)n=k(k≧1) のとき, 0<ak <3 と仮定すると, 1 <ak+1<4 .. 1<√1+ak<2 n=1のときも考えて, 3-ans \n-1 (3-a) (3)(1),(2)より 0<3-ans()(3-as) 前に不等式証明 あるので匂いプンプン 11-00 ここで, lim はさみうちの原理より (3- = 0 だから, 42 lim (3-am)=0 liman=3 参 考 43 でグラフを利用して数列の極限 を考えました.今回は, 38の復習も 兼ねて, グラフで考えてみます。 (a) y=x as aa y=f(x) y=f(x)=1+√1+x と y=xのグラフを かき, α1 を 0<x<3 をみたすようにとれば, a2, a, ・・・と, どんどん3に近づいていく様 子が読み取れるはずです . (an) d a 3 10 I ポイント 一般項が求まらない数列{an} に対しても lima は, 次の手順で求めることができる ① anのとりうる値の範囲をおさえる 第4章 両辺に1を加えて 2<1+1+ <3 .. 2<ak+1 <3 よって, 0<ak+1 <3 が成りたつ. (i), (ii)より, すべての自然数nについて ① は成りたつ. (2) an+1=1+√1+an3-an+1=2√1+αn まず,左辺に3+1 (右辺)= (2-√1+am)(2+√1+αn) 2+√1+an をつくると (1)より,1<√1+am<2の両辺に2を加えて3<2+√1+an <4 両辺の逆数をとって1/1 3-4 >0 だから, 2+√1+an 3 3-a (3-an) 2+√1+an3 ∴.3-an+1 < ÷(3- ② liman(=α) を予想する →80 ③ |an+1-α|≦klan-α (0<k<1) の形に変形し て, はさみうち 3-an 2+√1+an <右辺にも3-αがでて くる 演習問題 45 xn²+2 √2+1= 1, 2, ...) で表される数列{rn} に 2.xn ついて 次の(1),(2),(3)を示せ. (1) √2+1<In (2) n+1-v (2) (3)lim=√2 8012

回答募集中 回答数: 0