学年

教科

質問の種類

数学 高校生

真ん中らへんの式で、pについて平方完成する所についての質問で、なぜここで平方完成しようと思うのですか?円のベクトル方程式に帰着するためですか?また、そうするためだとしたら、ベクトル方程式の形は、写真の2枚目にある5個の型は頭に入れるべきということですか?回答よろしくお願いします。

例題 37 ベクトルと軌跡 平面上に ∠A=90° である △ABCがある。 この平面上の点Pが AP BP + BP・CP+CP・AP = 0 ・・・ ① 思考プロセス を満たすとき,点Pはどのような図形をえがくか。 基準を定める D Go ・直 (1 (2 ますか (3 ①は始点がそろっていない。∠A=90°を使いやすくするため。 基準をAとし,① の各ベクトルの始点をAにそろえ 図形が分かるP(b) のベクトル方程式を導く。 例 直線: p=a+αや(カーan = 0 の形 円:1p-d=rや(カーム)(カーム)=0 Action» 点Pの軌跡は,P(n) に関するベクトル方程式をつくれ A えがく 解AB=1, AC=c, AP = p とおくと, 始点をAにそろえる。 ∠A=90° より b. c = 0 このとき ①は Bをかためる 2集より 円かない? と予想。 + ) + ( a − ) · (x − 1) = 0 p⋅ (pb)+(pb) • (p−c) + (b −c) · p=0 32-26-2c p=0 1³ - 2² ² (b+c) · b = 0 3 + 2 1 1 b + c | ² = 0 9 2 b+c = 13 3 b+c 6 (1) sこす動特P = 15-b.c=0 (2) 2次式の平方完成のよう に考える。 0 (祝) る k t k よって b+c 10より 例題 ここで, で表される点は△ABCの重心Gであるか 20 だいたいこ 3 A ブク軌跡から、②は ||GP| = |AG| したがって, 点P は △ABCの重心 (2) 2円か垂Gを中心とし,AG の長さを半径と (1) | 重心G は, 線分 BC の中 点をMとし, 線分AM を 直二等分する円をえがく。 B 2:1に内分する点である。 線さま以 M C (3) 〔別解〕 (6行目までは同様) b. {b 2 sa (b+c)}=0 =0より,AE=2/22 (+)とおくと, 点PはAEを直径とする円である。 と b+c AP EP=0 このとき,中心の位置ベクトルは であり,これは 3 △ABC の重心Gである(以降同様) らまん次以お As 満たす

解決済み 回答数: 1
数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

(2)で私はx=nから始めたのですが答えがどうしても合いません。nではダメなのでしょうか。教えて頂きたいです🙇

254 重要 例題 161 面積と数列の和の極限①①①①① 曲線 y=ex をCとする。 ・cos21. (1) C上の点P(0, 1) における接線とx軸との交点を Q とし,Qを通りx 軸に垂直な直線とCとの交点をP2とする。Cおよび2つの線分 PiQ1, QP2 で囲まれる部分の面積Sを求めよ。 (2)自然数nに対して, PrからQn, Pn+1 を次のように定める。C上の点P における接線とx軸との交点をQn とし, Qn を通りx軸に垂直な直線と C との交点をP1 とする。 Cおよび2つの線分 PQ QnPn+1 で囲まれる部 分の面積Sを求めよ。 00 n, たが、 (3) 無限級数ΣSnの和を求めよ。 [類 長岡技科大 ] n=1 基本153 CHART & SOLUTION (1) 曲線 y=f(x) 上のx=αの点における接線の方程式は y-f(a)=f'(a)(x-a) 面積S1 は, 0 を原点として 曲が をしている区間 =2 (Cおよび3つの線分P10, OQ1, QiP2 で囲まれる部分) (OPQ) と考えると求めやすい。 (2) Pr(an,e-an) とすると, 点P" における接線とx軸との交点のx座標, すなわち, 点 Q のx座標が、点P+1 の x 座標 α+1 と等しいことから, 数列{a} の2項間漸化式を作る ことができる。 これから一般項 αn が求まり, (1) と同様に定積分を計算することで、面積Sを求めるこ とができる。 (3) 数列 {Sn} は等比数列となるから、無限等比級数の和を考えることになる。 常に y20 解答 A-CO -sin2=ipint-asin (1) -x y = e¯x 5 v' ==-x ib VA 20, cos から

解決済み 回答数: 1
1/50