学年

教科

質問の種類

情報:IT 高校生

15番の問題を教えてください

B 次の文の( )に入る適切な語句を記入しなさい。 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため,草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 ① Xo ②2 y 3 e (5 y ) - (② )で示される。 (6) 草の増加率はeであるから, 1日目の始めの草の量x」は e x1 = =(③ ) x ((Ⓡ Xn- )) 草の量をxとすると, で示される。したがって、n-1日目の始めの草の量をx1日目の始めの Xo=X1 8 z (9) Xn= 9) = )x((® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,x0 とx」の間に (⑨ 立つことが分かる。 (10 X1 11 e 12 Xo の関係式が成り 13 20 そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには, 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, 14 1.25 b )=(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると, 上の式と (⑨) の式から e=( )x((2 11)-( であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって,草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に, e= 1.1 だとすると, 草は ( 日目のうちに枯渇 する。現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、本来はより詳細なモデルが必要となる。 100=100-200 Xiex(Xo-20) x=11x(x-20) x=1.1x-2.2 X-1.1x=-2.2 ==+2.2 X=22 22

回答募集中 回答数: 0
情報:IT 高校生

答え合わせをしたいので、解説と回答をお願いしたいです!

5 以下の文章を読み, 空所 33 40 に入れるのに最も適当なもの を後の解答群から一つずつ選び, 対応した解答欄にマークしなさい。 なお, は、2度目以降は 33 や 33 や 34 など同じ内容を含む空所が複数回現れるときに 34 などのように細字で表記する。 図1のように, 1から13までの番号が書かれた13枚のカードがある。 これらの カードからランダムに2枚のカードを選ぶとき, 選ばれた2枚のカードに書かれた 番号が連続した数値となる確率を計算するプログラムについて考える。 1から13までの番号が書かれたカード 1 2 34 5 6 17 8 9 |10|11 12 13 カードに書かれた番号が連続した数値となる2枚の例 3 4 7 78 |12|13| 図1 これらの13枚のカードから任意の2枚を選ぶときの組み合わせの総数を x, カードに書かれた番号が連続した数値となる2枚を選ぶときの組み合わせの総数を yとする。 また, 選ばれた2枚のカードに書かれた番号をi,j (i < j) とする。 (1)xとyから確率を求める計算式はp= 33 [ 33 の解答群] ① x+y ⑤y+x x-y (6 y-x ⑦yxx (2) i,jが連続した数値となる条件は [ 34 の解答群] となる。 xxy x÷y yix 34 である。 ① j+i=1 ② j + i = -1 ③ j-i=1 ④ j-i= -1 - 8

回答募集中 回答数: 0
1/65