情報:IT
高校生

15番の問題を教えてください

B 次の文の( )に入る適切な語句を記入しなさい。 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため,草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 ① Xo ②2 y 3 e (5 y ) - (② )で示される。 (6) 草の増加率はeであるから, 1日目の始めの草の量x」は e x1 = =(③ ) x ((Ⓡ Xn- )) 草の量をxとすると, で示される。したがって、n-1日目の始めの草の量をx1日目の始めの Xo=X1 8 z (9) Xn= 9) = )x((® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,x0 とx」の間に (⑨ 立つことが分かる。 (10 X1 11 e 12 Xo の関係式が成り 13 20 そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには, 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, 14 1.25 b )=(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると, 上の式と (⑨) の式から e=( )x((2 11)-( であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって,草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に, e= 1.1 だとすると, 草は ( 日目のうちに枯渇 する。現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、本来はより詳細なモデルが必要となる。 100=100-200 Xiex(Xo-20) x=11x(x-20) x=1.1x-2.2 X-1.1x=-2.2 ==+2.2 X=22 22
シュミレーションの活用

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉