学年

教科

質問の種類

数学 高校生

因数分解の問題で、cについて整理して下線部のような式にはどうすればなりますか? 計算方法を教えて下さい🙇‍♀️

2 因数分解/2次式・ つぎの式を因数分解せよ. (1) (a-b+c-1)(a-1)-bc (2) 2x2+5xy-12y2-2x+25y-12 (3)(x+2y) (x-y) +3y-1 (酪農学園大酪農、環境) (京都産大・生命) odel-Co SI-((東北学院大・文系) 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 の文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」 をすればよい。 (2)も, x, yの2次式の部分を因数分解すれば同様にできる(別解). 慣習 因数分解せよ,という問題では, 特に指示がない限り, 係数が有理数の範囲で因数分解する . ■解答 (1) まずcについて整理することにより, 与式={c(a-1)+(a-b-1) (a-1)}-bc 与式はαについては2次だが, 6 やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1) (a+c-1) (2) まずについて整理することにより, 5-2x²+(5y-2)x-(12y2-25y+12) =2x²+(5y-2)r-(3y-4) (4y-3) a={x+(4y-3)}{2x-(3y-4)}....... 3-4-25 × -3 ① 1 (4y-3) × 2-(3y-4) →5y-2

解決済み 回答数: 1
数学 高校生

数学Ⅱで質問です。 写真の問題の解答で、 [2]でm≠−1 をするのはどうしてか教えていただきたいです。お願いします。

26 第2章 複素数と方程式 CONNECT 5 方程式がただ1つの実数解をもつ条件 第 1 xの方程式 (m+1)x2+2(m-1)x+2m-5=0がただ1つの実数解をもつとき 定数の値を求めよ。 考え方 m+1=0 すなわち m =-1のとき, 与えられた方程式は1次方程式となり, だ1つの実数解をもつ。m=-1とmキー1で場合分けをする。 解答 (m+1)x2+2(m-1)x+2m-5=0 ...... ① とおく。 [1] m+1=0 すなわちm=1のとき 解と係数の関係 1 解と係数の関係 2次方程式 ax2+bx+c=0の2つの解をα,βと 2 2次式の因数分解 2次方程式 ax2+bx+c=0の2つの解をα,βと 3 2 数α,β解とする2次方程式 2数α, βを解とする2次方程式の1つは 方程式①は-4x-7=0となり, ただ1つの実数解 x=- -- 7 をもつ。 4 [2] m+1=0 すなわちmキー1のとき 方程式 ① は2次方程式となるから、①の判別式をDとすると D=(m-1)-(m+1)(2m-5)=-m²+m+6 =-(m+2)(m-3) ①がただ1つの実数解をもつのはD=0のときである。 -(m+2)(m-3)=0 よって これを解いて m=-2,3 これらはmキー1を満たす。 [1], [2] より, 求めるmの値は m=-2,-1,3 *04 の現 A 問 87 次の2次方程式について 2つの (1)x2+3x+2=0 *(3) 4x2+3x-9=0 *88 2次方程式 x²-2x+3=0の2 めよ。 (1)Q2+β2 (2) 303 (5)

未解決 回答数: 1
数学 高校生

数II複素数の問題です。 下の鉛筆でかいてあるとおりD>0では?

つよう 基本 48 重要 例題 50 2次式の因数分解(2) 4x2+7xy-2y-5x+8y+h がx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また、 そのときの因数分解の結果を求めよ。 [類 創価大 ] CHART & THINKING 2次式の因数分解 = 0 とおいた2次方程式の解を利用 基本 20,46 「xyの1次式の積に因数分解できる」 とは, (与式)=(ax+by+c) (dx+ey+f) の形に表 されるということである。 また, 与式をxの2次式とみたとき(yを定数とみる), (与式) = 0 とおいた2次方程式 4x2+(7y-5)x-2y2-8y-k)=0の判別式をDとする と与式は x=(zy-s)+√x-(Py-5) の形に因数分解できる。この因 8 8 数x、yの1次式となるのは、Dが(yの1次式) すなわち」についての完全平方式のと きである。 それは, D1=0 とおいて、どのような条件が成り立つときだろうか? 答 ( (与式)=0とおいた方程式をxの2次方程式とみて 4x2+(7y-5)x-(2y2-8y-k)=0 ① の判別式をDとするとである。 83 int 恒等式の考えにより 解く方法もある。 (解答編 P-80=8+ および p.59 EXERCISES 15 参照) D=(7y-5)2+4・4(2y2-8y-k)=81y2-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は,①の 解がyの1次式となること, すなわち D がyの完全平方式 となることである。 D1 = 0 とおいた」の2次方程式 81y2-198y+25-16k=0 の判別式をDとすると D2-(-99)2-81(25-16k)=81{112-(25-16k)} 44 04-81(96+16k) 2-1 0 D2 = 0 となればよいから 96+16k=0よって=-6 このとき, D=81y-198y+121=(9y-11)2 であるから, ①の解は x= __(7y-5)±√(9y-11)-(7y-5)±(9y-11) 8 8 5 ◆ D1 が完全平方式⇔ 2次方程式 D=0が重 解をもつ 計算を工夫すると 992=(9.11)=81・112 よって 音√(9y-11)=|9y-11| であるが, ±がついて いるから, 9y-11 の 対値ははずしてよい。 すなわち x=y-3-2y+2 4 中 (与式)=4x =(x-3)(x-2y+2)}(S) 括弧の前のを忘れ いように。 =(4x-y+3)(x+2y-2)

解決済み 回答数: 1
数学 高校生

(3)のオレンジで囲われたところが分かりません。🟰の意味を教えてください🙇‍♀️

(注)この科目には、 選択問題があります。 (3ページ参照】 第1問 (必答問題) (配点 30) (1)を実数の定数とし、二つの等式 z³-(4a-6)x+3a²-4a-7=0 ------ 12-al-5-a +(34-7)(9) を考える。 (1) は a 52-(4-6) (307) (税別) x 246 -73 (3) ①と③をともに満たす負の実数ェが存在するの のときである。 (エーロー a+ と変形できる。 22 (7 (2) 下の カ には、次の①~⑤のうちから当てはまるもの を一つずつ選べ。 ただし、 同じものを繰り返し選んでもよい。 @ ③ M 0 ②をたす実数ェが存在するようなαの条件は エ ② M 6 であり。 ②を満たす負の実数ェが存在するようなαの条件は である。 1-5+α (数学Ⅰ・数学A 第1間は次ページに続く。) 第1問 数と式、集合と命題 2次関数 〔1〕 出題のねらい 文字係数の2次式の因数分解ができるか。 ・絶対値記号を含み, 文字定数を含む方程式の解を調 べられるか。 解説 2 (4α-6)x+342-44-7=0 ...... ① |x-al-5-a (1) ①の左辺を変形して, ......② x²-(4a-6)x+(a+1)(3a-7)=0 {z_(a+1)}{z-(34-7)}=0 (x-a-1)(x-34+7)=0 ......ア, イ, ウ (2)②を満たす実数xが存在するのは, 5-a≥0 すなわち. a≤5 (......(3) ······オ エ のときで,このとき②より. x-a ±(5-a) x-a=5-α, -5+α より . x=5, 2a-5 となるから, ②を満たす負の実数xが存在するa の条件は, 2a-5<0 すなわち. a (これはas5を満たす。) ......キク (0) (3) ①を満たすæは、 x=a+1, 3a-7 よって、 ①、②をともに満たす負の実数xが存 在するのは, (i) a+1=2a-5 a< または, (i) 3a-7=2a-5 >a< のいずれかの場合である。 (i)のとき, α+1=24-5より. a=6

解決済み 回答数: 1
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

複素数の問題です。 POINT CHECKとPRACTICEの大門1について、 どちらも同じ「複素数の範囲で因数分解をしなさい」と言われていて、前者の答えは()の中の分数を無くすようにしているのに対して、後者は()に分数があるまま答えを出しています。 何が違うのでしょう... 続きを読む

第2章 複素数と方程式 1 複素数と2次方程式 23 解と係数の関係 (2) 数Ⅱ [学習日 P64 POINT CHECK ①の類題 実数の範囲で因数分解する。 2次方程式 4.12x+7=0を解くと, ・特に指定がない場合は, 有理数の範囲で因数分解する。 つまり、 2次式はつねに1次式の積に因数分解できる。 (ただし, 複素数の範囲) 学習の目標 2次方程式の解を利用して因数分解しましょう。 STUDY GUIDE 愛念の全合 2次式の因数分解 2次方程式 ax+bx+c=0の2つの解をα, B とおくと, 次の関係がある。 公式の因数分解 ax'+bx+c=a(α)(B) 計算における注意 因数分解のときに,g を忘れないこと。 α. β は,解の公式から必ず求められる。 要点をまとめましょう。 662-4.7 I= 4 68 4 3±√2 2 一複素数 実数 [ 有理数!!!!無理数 よって, 例題 次の2次式を複素数の範囲で因数分解しなさい。 x²-4x+1 解の公式から解を求める 2次方程式 4x+1=0を解くと. x=2±√2"-1=2±√3 よって, 4r+1={z(2+√3)} {ェー(2-√3)} =(x-2-√3)(x-2+√3) 実数の範囲での因数分解 POINT CHECK ◆次の2次式を複素数の範囲で因数分解しなさい。 ①の類題 4ー12c+7 x²-6x+14 2次方程式6z+14=0を解くと. =3±√32-14=3±√-5=3±√5i よって、 = 6z+14= {z(3+√5)}{ェー(3−√5) (3-5) (3+√5i) 42-12F+7=(3+/2)(x-3) 2 =(2x-3-√2) (2-3+√2 ) ②の類題 複素数の範囲で因数分解する。 2次方程式 92+6x+2=0を解くと, I= -3±√32-9.2 9 -3±√-9 複素数の範囲での因数分解 9 -3±√9i 要点の確認をしましょう 9 -1±i 品の類題 9z+6z+2 = 3 (2x-3-√2) (2x-3+√2) -64- PRACTICE 1 次の2次式を複素数の範囲で因数分解しなさい。 10 L100 (1) 3-7x+3 よって, 9x²+6x+2=9(x−−1 + 1)(x-1-1) 3 =(3+1-i)(3c+1+i) (3x+1-i)(3x+1+i) P65 PRACTICE 1 2次方程式の解を求めて, 因数分解する。 (1) 2次方程式32-7x+3=0を解くと, 7±√13 I= 6 数Ⅱ 練習問題を解いてみましょう L103 (2) 2-3x+5 3c-7s+3=3(x_7+/13)(x_7-/13) 6 6 (2) 2次方程式 2-3x+5=0を解くと, 3(x-7+√13)(x-7-√13) 6 6 3+√11 (x-3)(x-3) 2 次の式を ①有理数 ② 実数 ③複素数の各範囲で因数分解しなさい。 3±√11i 2 3+5=(x-3)(x-3) 2 2(1) -32-10=(x2+2) (2-5) ① =(x2+2)(x+√5)(x-√5) →②

解決済み 回答数: 1
1/10