数学
高校生
解決済み

(3)のオレンジで囲われたところが分かりません。🟰の意味を教えてください🙇‍♀️

(注)この科目には、 選択問題があります。 (3ページ参照】 第1問 (必答問題) (配点 30) (1)を実数の定数とし、二つの等式 z³-(4a-6)x+3a²-4a-7=0 ------ 12-al-5-a +(34-7)(9) を考える。 (1) は a 52-(4-6) (307) (税別) x 246 -73 (3) ①と③をともに満たす負の実数ェが存在するの のときである。 (エーロー a+ と変形できる。 22 (7 (2) 下の カ には、次の①~⑤のうちから当てはまるもの を一つずつ選べ。 ただし、 同じものを繰り返し選んでもよい。 @ ③ M 0 ②をたす実数ェが存在するようなαの条件は エ ② M 6 であり。 ②を満たす負の実数ェが存在するようなαの条件は である。 1-5+α (数学Ⅰ・数学A 第1間は次ページに続く。) 第1問 数と式、集合と命題 2次関数 〔1〕 出題のねらい 文字係数の2次式の因数分解ができるか。 ・絶対値記号を含み, 文字定数を含む方程式の解を調 べられるか。 解説 2 (4α-6)x+342-44-7=0 ...... ① |x-al-5-a (1) ①の左辺を変形して, ......② x²-(4a-6)x+(a+1)(3a-7)=0 {z_(a+1)}{z-(34-7)}=0 (x-a-1)(x-34+7)=0 ......ア, イ, ウ (2)②を満たす実数xが存在するのは, 5-a≥0 すなわち. a≤5 (......(3) ······オ エ のときで,このとき②より. x-a ±(5-a) x-a=5-α, -5+α より . x=5, 2a-5 となるから, ②を満たす負の実数xが存在するa の条件は, 2a-5<0 すなわち. a (これはas5を満たす。) ......キク (0) (3) ①を満たすæは、 x=a+1, 3a-7 よって、 ①、②をともに満たす負の実数xが存 在するのは, (i) a+1=2a-5 a< または, (i) 3a-7=2a-5 >a< のいずれかの場合である。 (i)のとき, α+1=24-5より. a=6

回答

✨ ベストアンサー ✨

解が一致する、という=です

①を解くとx=a+1, 3a-7です
②が負の実数を解にもつ(つまりa<5/2の)とき、
その解はx=2a-5です
ここまでが(1)(2)でわかったことです

(3)は①かつ②が負の実数である条件なので、
①②が共通な解をもち、それが負の実数であるということです
つまり「a+1=2a-5か3a-7=2a-5」かつa<5/2です

この回答にコメントする
疑問は解決しましたか?