学年

教科

質問の種類

数学 高校生

最後の青い()のところで、右に書いてある感じで、係数を比較して答えを出すのは減点されますか? x=0とかπ/2とかを代入して計算するやり方でないとだめですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx) のとき, 等式 y"+2e-1=0 を証明せよ。 |(2) y=ezsinxに 267 00000 に対して,y"=ay+by' となるような定数a,bの値を求めよ。 [(1) 信州大, (2) 駒澤大] 基本 155 指針第2次導関数y” を求めるには,まず導関数y' を求める。 また, 1), (2) の等式はともに 解答 x の恒等式である。 (1) y” を求めて証明したい式の左辺に代入する。 また,er をxで表すには, 等式 elog = pを利用する。 (2) y, y” を求めて与式に代入し、 数値代入法を用いる。 y=2log(1+cosx) であるから (1+cosx). 2sinx y'=2. 1+cosx よって y"=- 1+cost 2{cosx(1+cosx)−sinx(−sinx)} (1+cosxnia 2(1+cosx) (1+cosx) 2 1+cosx ex=1+cosx また, // = log(1+cosx) であるから 2 log M = klogM なお, -1≦cosx≦1と (真数) > 0 から 1+cosx>0 sinx+cos2x=1 [0] elogp=pを利用すると elog(1+cosx)=1+cosx 5章 22 2 高次導関数関数のいろいろな表し方と導関数 ゆえに よって 2e-= 2 2 y 1+cosx e2 y"+2e-=-- 2 + 2=0 1+cosx 1+cosx (2) y=2e*sinx+ecosx=ex(2sinx+cosx) y=2e2(2sinx+cosx)+e(2cosx−sinx) =e2x(3sinx+4cosx) ゆえに ...... ay+by'=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y=ay+by' に ①,②を代入して中 e2x \(e2*)(2sinx+cosx) 1 | +e(2sinx+cosx) (S (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ ③はxの恒等式であるから, x=0 を代入して 4=b 参考 (2) y=ay+by' の ように、未知の関数の導関数 を含む等式を微分方程式と いう(詳しくは p.473 参照)。 ③が恒等式⇒③にx=0, また,x=を代入して 3e=e" (a+26) これを解いて a=-5,6=4 このとき 2 を代入しても成り立つ。 (③の右辺)=ex{(-5+2・4)sinx+4cosx}=(③の左辺) 逆の確認。 したがって a=-5, 6=4 係数を比較して、 a+26=3. よって 4:6. a:-5. (1)y=log(x+√x+1)のとき,等式(x+10y+xy=0 を証明せよ。 156 (2)yee yayby=0を満たすとぎ 定数a,bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大] p.275 EX131~133 airy.

解決済み 回答数: 2
数学 高校生

157.2 記述に問題ないですか??

246 基本例題157 三角関数の最大 最小 (4) ・・・t=sin+cos0 ①①00 関数 f(0) = sin20+2(sin0+ cos 0) - 1 を考える。 ただし, 0≦O<2πとする。 (1) t=sin0+cose とおくとき, f(0) を tの式で表せ。 (2) t のとりうる値の範囲を求めよ。 (3) f(0) の最大値と最小値を求め,そのときの0の値を求めよ。 415 指針▷ (1) t=sin+cose の両辺を2乗すると, 2sin cos 0 が現れる。 解答 (1) t = sin0+cose の両辺を2乗すると (2) sin+cose の最大値 最小値を求めるのと同じ。 (3)(1) の結果から,t の2次関数の最大・最小問題 (t の範囲に注意) となる。よって、 本例題141 と同様に 2次式は基本形に直すに従って処理する。 0 ゆえに したがって t2=sin20+2sin Acos0+cos20 t2=1+sin20 よって f(0)=t2-1+2t-1=t+2t-2 (2) t=sin0+cos0=√/2sin (0+4) ① 9 00 <2のとき,40+1 したがって -15sin(0+)≤15 -√2 ≤t≤√2 (3) (1) から f(0)=t2+2t-2=(t+1)²-3 -√2≦t≦√2の範囲において, f(0) は t=√2で最大値 2√2, t=-1で最小値-3 をとる。 t=√2 のとき, ① から sin (0+4)=1 =1& 76ain ②の範囲で解くと t=-1のとき, ① から ② の範囲で解くと よって π 0+ T π...... ・・・・・ ② であるから π 4 2 0+ sin20=t2-1 π 5 4 4 Leben feue EN 0=7のとき最大値2√2; π, 1 sin (0+4)=-(+)nie √2 $2 すなわち匹 0=1 4 ; 0= π, 3 7 - すなわち0=π, 4 【sin²0+cos20=1 YA O 基本13 14 【類 秋田 ② : 合成後の変域に注意。 3 π 2 のとき最小値-3 √2 f(0) 2√2-1 -1 1 iO 最小 -3 1

解決済み 回答数: 1
1/21