学年

教科

質問の種類

数学 高校生

一対一対応の演習の微分問題です。 (イ)の(2)なのですが、f(α)-f(β)をするのは理解できるのですが、どうして積分が出てくるのか分かりません。誰か教えてください😭😭

このとき, a= 3 極値の条件から求める (ア) 3次関数f(x)=23+ar2+bx+cはx=1で極大値6をとり,r=2で極小値をとるとする。 =,b=,c= である. また, f(x) の極小値は □である。 (大阪産大) (イ) f(x)=x-3ar2+3bx について、 次の問いに答えよ. (1) f(x) が極値を持つ条件をα, b で表せ. (2) f(x)の極大値と極小値の差が4となるための条件を a, b で表せ. (鈴鹿医療科学大) f'(x) を主役にする f(x) が3次関数のとき, f (x)は2次関数になり, 極値をとるェの値が 1,2と与えられると,'(1)=f(2) = 0 となるので、f'(x)はほとんど決まってしまう. f(x)=2x+a2+bx+c の未知数a, b, c についての関係式を立てて a, b, c を求めるよりも、f'(x) を求めにいった方が手際よい. 3次関数の極値の差は導関数の定積分で f'(x) =0の解をα, β (α <β) とすると f(x)=a(x-a)(z-B)とおける.また, 極値の差は,f(a)-f(B)=fff'(x) dr である.こうと らえると,定積分の公式∫(エーα) (1-B) dr=-1/2 (B-α)を用いることができて計算が楽になる. (2)は多収式] 解答 18 (ア) f(x) = 2x3+ax2+bx+c...... ① f'(x)=6x2+2ax+b...... ② f(x)はx=1, 2で極値をとるから、 (x)=0の解がx=1,2となり, f'(x) は, (x-1)(x-2)で割り切れる。 ②で2次の係数が6であることから f'(x) =6(x-1)(x-2)=6x²-18x+12 因数定理 ②より 2a=-18, 6=12 . α=-9, b=12 zat4a-46 zat 2/a-b f(x)=2x3-9x2+12x+c 2 2 f(1) =6より, 2-9+12+c=6 .. c=1 極小値は, f (2) =2・23-9・22+12・2+1=5 (イ) (1) f'(x)=3(2-2ax+b) f'(x) =0が相異なる2実解を持つこ とが条件で, 判別式D>0. つまり、α-60 (2) f(x) =0を解いて,r=a±√d-ba=a- a=a-√√a²-b, B=a+√a²-b とおくと, f'(x)のxの係数が3であるから, f'(x) =3(x-α)(x-β) f(a)-f(B)=f(x)dx=∫3(エーα)(エーB)dr=2 (α-B)3 f(a)-- SS f(B) N |y=f(x) if(a)>f(B) >>√ª² (x-a) (x−B) dx €( 9 −zº / )v=e( 9—¿º (2) ² =¢( 0-8)= 極値の差が4であるから, 4(√2-634 S .. α-b=1 [6分の1公式]

未解決 回答数: 0
数学 高校生

一対一対応の数2の積分の問題で、(3)について質問したいです。 a≧1の時に増加するの意味が分かりません。 また、なぜ0≦a≦1の時に微分をして極小値を求めたら最小値が求まるのかも意味が分かりません。解説してもらいたいです😭お願いします😭

3 定積分関数/区間固定型 —— 0以上の実数aに対して,I(a)=faldr とおく。 (1) a≧1のとき, I (α) を求めよ. (2) 0≦a≦1 のとき, I (α) を求めよ. (3) I (α) の最小値を求めよ. (神戸大文系-後/一部変更) 積分変数以外は定数 積分計算において,積分変数 (dr と書いてあったらェ) 以外は定数である. Sュー☆ではaは定数つまりS|-4|dr [a=2の場合] のようなものだと思って, O2と同様に絶対値をはずして計算すればよい。 αの値を決めるごとに☆の値が決まる,ということが 理解できれば 「☆はαの関数意味でI(α) と書いてある」こともわかるだろう. 解答 1(a) = f (a²-r²) dr-[4-3³] (1) 4≧1のとき,0≦x≦1でrd'≦0 だから dx= y=(x+a)(x) T Y y=x²-a² <y=x²-a² l£x=ax =a²- 1 3 気をつける 01 a/ だから, (2) O≦a≦1のとき|r-q2}={a°」? (O≦x≦a) y=x-a lx²-a² (a≤x≤1) YA y=x²-a² 1(a)=√ª (a² — r²) dx + f (x²-a²) dx 0 1 48 = x³ a 3 3 14 +a2x· 3 a3 4 3 1 3 るので, x=αが積分区間 x=0~1に含まれるかどうか (つ まり, 0≦a≦1かどうか)で場合 わけをする.この例題では≧1, 0≦a≦1 が与えられているが,こ の場合わけは自力でできるよう にしておきたい。 ( ←第2項の積分区間の上端と下端 を入れかえ、被積分関数を -1倍. (220) (1) (S232 \) (3) a≧1のとき,(1)よりI (α) は増加する. 0≦a≦1のとき,(2)よりI'(α)=4a2-2a=2a (2a-1) であるから, 増減は右表のようになる. よって, 求める a 0 I'(a) 最小値は 1(1/2) 41 1 1 2-3+4 + = 38 4 3 12 I(a) 1/2 1 + 0 4 - (2)\

未解決 回答数: 1
数学 高校生

組(a1 a2 a3)と組み合わせ(a1 a2 a3)は一対一対応 の一対一対応とはどのような意味ですか? 詳しく教えてくださいお願いします。

ステージ2 典型手法編 場合の数 前 ITEM で見たように,順列の方が順序を のがふつうです.しかし、条件として順序が指定されている場合には, きます. ここが ツボ! 順序が指定されているなら、「順列」の代わりに「組合せ」を参」 例題20A サイコロを3回投げるとき, 出た目を順に a1,a2,a3 と する. a <az<α3 を満たす組 (a1,a2, α3) の個数を求めよ. 着眼1 第何回の目であるかに応じて au, 42, 43 と名前が付けられていますから、 ○○を区別 ? ろん出た目の順番を区別して考えます. 「組」とは順序を考えたものですから、たとえば (2,3,5)(2,5,3) を異なるものとして数えるべきなのですが,本間では a1,a2, α3 の大小関係が指定 れているため,(2,5,3) などはカウントしません。つまり どの3種類の目が出るか が決まれば,組(a1,a2, α3) も自動的に決まってしまうのです. [解答 a <az<αのとき 6C3= 順列 よって求める場合の数は、サイコロの目 : 1,2,3,4,56から異なる3個の目を選ぶ 組合せを考えて α3)」と「組合せ {a1,a2,a3}」は1対1対応. 「組(a1,a2, 6・5・4=20(通り). 3.2 事情が変わ 解説本来「組合せ {a1,a2,a3) (a1,a2,a3 は全て相異なる)」1つから作られる 「組 (a1,a2, as)」の個数は,3!=6通り)です。つまり「組合せ」と「組」の対応関係は 1:6 ですね.しかし本問では大小関係 「a <az<as」により1:1の対応となります. 組合せ 順序指定なら 1対1 順列 12, 43} は同じものを含む ことが許されるため, やや難しくなり,重複組合せ( ITEM24, ITEM39) を考える ことになります. 参考1 本間の条件が a≦a≦as となった場合, 組合せ {a1,a2, internet の8文字を並べるとき, 3つの母音iee が 例題20B この順に並ぶものは何通りか? 着眼2] 前問において「大小関係α <az<a」が決まって やって みよう1

未解決 回答数: 1
1/7