学年

教科

質問の種類

数学 高校生

(ク)について質問なのですが、なぜこの場合、二項分布なのでしょうか?二項分布と正規分布の違いも教えて欲しいです!!ネットで調べたのですが、二項分布を性格に書くと正規分布とでて曖昧な理解しか得られてなくて不安です。どなたかよろしくお願いします🙇‍♀️

第5問 (選択問題(配点 16 袋の中に赤球2個と白球4個が入っている。 この袋から 3個の球を同時に取り出 それらの球の色を確認して袋に戻すという試行をTとする。 Tを1回行ったと き、取り出した3個の球のうち赤球の個数をY とする。 第1回 (2)Tを1回行うごとに, Y = 0 であれば3点を獲得し, Y±0 であれば1点を獲得 するとする。 Tを繰り返し50回行ったとき、得点の合計をZとする。 このとき、50回のうち Y=0 となった回数を W とする。 ア ウ (1) P(Y=0)= P(Y-1)= イ エ 確率変数 W は ク に従うので,W の平均はケコ Wの分散は である。 カ Z= シ W + スセ であるから, 確率変数Zの平均はソタ Zの標準 であり。 確率変数の平均(期待値)は オ Yの分散は である。 キ 偏差は チ ツ である。 数学 数学B. 数学C 第5間は次ページにく) ク については、最も適当なものを、 次の①~⑤のうちから一つ選べ。 @ 正規分布 N (0.1) ② 正規分布N 50. ④ 正規分布 N (10.8) ( ① 二項分布 B(0,1) ③ 二項分布B 50, ⑤分 B (108)

解決済み 回答数: 1
数学 高校生

統計的な推測 まず、(AとB)で、 求めたP(A)と求めたP(B)をかけたのと、 P(A)かつP(B)にあてはまるのを一つずつ数え上げたもの、 この方法で出た2式を比べている、という認識をしているのですが(違っていたらご指摘下さい)、 (AとC)は 数え上げの後、何をや... 続きを読む

基本 例 71 独立・従属の判定 00000 1個のさいころを2回続けて投げるとき,出る目の数を順に m,nとする。 <3である事象を A, 積 mn が奇数である事象をB, |m-n|<5である事象を Cとするとき, AとB, AとCはそれぞれ独立か従属かを調べよ。 p.520 基本事項 指針 事象が独立か従属かの判定には,次の関係式のうち確かめやすいものを利用する。 (定義) 事象AとBが独立⇔P(B)=P(B) P(A)=P(A) ⇔P(A∩B)=P(A)P(B) (乗法定理) ここでは, 乗法定理が成り立つかどうかを確認する方法で調べてみよう。 (AC) Cについて, m-n<5を満たす組 (m,n) の総数は多いので、余事象で を考えてみる。 AとCが独立AとCが独立であることに注目して,AとCが独立か従属 かを調べる。 (AとB) A∩Bは、 (AB) P(A)=1/2/28-1/13 (m, n) = (1,1), (1,3), 解答 また,積mn が奇数となるのは,m, nがともに奇数の (1,5) となる事象である 3×3 1 から ときであるから P(B)= 62 4 P(A∩B) P(B)= よって P(A)P(B)=1/12 P(A) 3626 また,m<3かつ積n が奇数となるには, 一方,P(B)=- -- であるか (m, n)=(1,1) (1,3) (15) の3通りがあるから ら P(B)=P(B) よって, AとBは独立。 ゆえに 3 P(ANB)=-11 62 12 P(A∩B)=P(A)P(B) よって, AとBは独立である。 (AC) 余事象は|m-n≧5 となる事象, すなわち (m,n) = (1,6), (61) となる事象である。 Cの根元事象の個数は 2 個。 2 1 よってP(C)= 62 18 また # P(ANC)==136 62 Anではm<3 かつ 1 ゆえに、P(A)P(T)= 1 1 F = 3 18 54 であるから m-n≧5となる事象 で、そのような(m,n) P(ANC) ≠P(A)P(C) よって, ACは従属であるから,AとCは従属であ る。 は (m,n)=(1,6)

解決済み 回答数: 1