学年

教科

質問の種類

数学 大学生・専門学校生・社会人

標本平均についてです。 写真の問題を見たときに、①0か1の2択であること②政党支持率は30%で一定であること③0か1の番号に振り分けることを繰り返すことの3つの条件が揃っていたので、二項分布だと思い、二項分布B(n,0.3)に従うと考えました。 そのため問1の期待値を0.3... 続きを読む

基本 例題164 標本平均の期待値,標準偏差 ある県において, 参議院議員選挙における有権者のA政党支持率は30%である という。この県の有権者の中から,無作為にη人を抽出するとき,k番目に抽出 された人が A 政党支持なら1, 不支持なら0の値を対応させる確率変数を Xんと する。 (1) 標本平均 X= X+X2+・・・・・+Xn について, 期待値E (X) を求めよ。 059 n | (2) 標本平均 X の標準偏差 (X) を 0.02以下にするためには, 抽出される標本 の大きさは、少なくとも何人以上必要であるか。 指針 (1) まず, 母平均 m を求める。 p.636 基本事項 4 4章 21 (2)まず,母標準偏差のを求める。そして, o(X)≦0.02 すなわち 1 小の自然数 n を求める。 0.02 を満たす最 n 解答 (1)母集団における変量は,A 政党支持なら1,不支持なら0 という2つの値をとる。 Xh 1 0 at P 0.3 0.7 1 よって, 母平均は m=1・0.3+0・0.7 = 0.3 (2)母標準偏差は ゆえに EX) =m=0.3 o=√(12・0.3+020.7) -m²=√0.3-0.09 =√0.21 統計的な推測 よって o(X) = √n 0.21 √n 28.18 √0.21 0.21 0.02 とすると,両辺を2乗して ≦0.0004 n n 小数を分数に直して考えて もよい。 (S) T 2100 0.21 0.21 ゆえに NZ = =525 ≦0.02 から 0.0004 4 √n この不等式を満たす最小の自然数n は n=525 √21 したがって、少なくとも525人以上必要である。 1-5 よって1/15 n 25 21

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

線で引いてあるところはなぜ、≦n-1ではないのですか?n人いて、n人勝つというのはありえないのでは…?? どなたか教えてください😭

深音 nを2以上の自然数とする。 n人全員が一組となってじゃんけんを1回するとき, 勝った人の数 Berbs m LGANSE actn rchis n 150 )ちょうどk人が勝つ確率 P(X=k) を求めよ。 ただし, kは1以上とする。 をXとする。ただし,あいこのときはX=0 とする。 数学B-46、 (2) Xの期待値を求めよ。 n人の手の出し方は全部で [1] 1<kSn-1のとき 勝つん人の選び方は その各場合について,勝つ人の手の出し方は、 ゲー, チョキ,←負ける人の手の出し方 パーの3通りずつある。 3" 通り 【名古屋大) C 通り 0 4 は自動的に決まる。 P(X=k)= »C&X3_»Ch 37 よって 37-1 [2] k2nのとき (2)Xのとりうる値はX=0, 1, 2, P(X=k)=0 ……, n-1である。 n-1 E(X)= EkP(X=k)= 1 n-1 1 n-1 Ek,C= 37-1R=0 -Ek,C。 37-1=1 k=0 こで 1SkSnのとき n! n! n! k,C&=k そ,C= =n*n-1C&-1 n-1 よって E(X)= ーCh-! 37-1R=1 = ー(カー1Co+n-1C:+……+カー1Cカ-2) 37-1 ここで,二項定理により (1+1)”1ーュー」Co+n-1Ci+ +カー1Cn-2+n-1Cn-1 カー1Co+n-1Ci+ +n-1Cn-2=2"-1_n-1Cカ-1 =2"-1-1 ゆえに n(2"-1-1) E(X)= 37-1 したがって 確率変数Xの期待値,分散,標準偏差を求めよ。 確率変数 11X-2の期待値,分散,標準偏差を求めよ。 【類センター試験」 るる値はX=0 1.2.3.4.5で

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

線で引いてあるところはなぜ、≦n-1ではないのですか?n人いて、n人勝つというのはありえないのでは…?? どなたか教えてください😭

深音 nを2以上の自然数とする。 n人全員が一組となってじゃんけんを1回するとき, 勝った人の数 Berbs m LGANSE actn rchis n 150 )ちょうどk人が勝つ確率 P(X=k) を求めよ。 ただし, kは1以上とする。 をXとする。ただし,あいこのときはX=0 とする。 数学B-46、 (2) Xの期待値を求めよ。 n人の手の出し方は全部で [1] 1<kSn-1のとき 勝つん人の選び方は その各場合について,勝つ人の手の出し方は、 ゲー, チョキ,←負ける人の手の出し方 パーの3通りずつある。 3" 通り 【名古屋大) C 通り 0 4 は自動的に決まる。 P(X=k)= »C&X3_»Ch 37 よって 37-1 [2] k2nのとき (2)Xのとりうる値はX=0, 1, 2, P(X=k)=0 ……, n-1である。 n-1 E(X)= EkP(X=k)= 1 n-1 1 n-1 Ek,C= 37-1R=0 -Ek,C。 37-1=1 k=0 こで 1SkSnのとき n! n! n! k,C&=k そ,C= =n*n-1C&-1 n-1 よって E(X)= ーCh-! 37-1R=1 = ー(カー1Co+n-1C:+……+カー1Cカ-2) 37-1 ここで,二項定理により (1+1)”1ーュー」Co+n-1Ci+ +カー1Cn-2+n-1Cn-1 カー1Co+n-1Ci+ +n-1Cn-2=2"-1_n-1Cカ-1 =2"-1-1 ゆえに n(2"-1-1) E(X)= 37-1 したがって 確率変数Xの期待値,分散,標準偏差を求めよ。 確率変数 11X-2の期待値,分散,標準偏差を求めよ。 【類センター試験」 るる値はX=0 1.2.3.4.5で

回答募集中 回答数: 0