学年

教科

質問の種類

数学 高校生

オレンジの蛍光ペンを引いているところと緑の蛍光ペンで引いたところは何か関係があるのでしょうか? 3.5.15の倍数をそれぞれ出して100から200の範囲で求めても結局足したら同じ300になると思うのですが、偶然なのでしょうか? どなたかすみませんがよろしくお願いします🙇‍♀️

1-8 (26) 第1章 数列 Think 例題 B1.5 数列の共通項 **** 100から200までの整数のうち、3または5の倍数の総和を求めよ. 考え方 (3の倍数または5の倍数の総和) =(3の倍数の和)+(5の倍数の和) ( 15の倍数の和) として求めればよい. n を整数とすると, 3の倍数は3で 102 から198 までの数 5の倍数は5m で 100から200までの数 15の倍数は15m で 105から195 までの数 それぞれの和は, 等差数列の和の公式を用いて求める. 3の倍数 15の倍数 -5の倍数 解答 100から200までの整数のうち、3の倍数の和をS1, 3と5の最小公倍数15の 5の倍数の和を S2, 15の倍数の和を S3 とする. 倍数が重複しているので、 3の倍数で最小のものは, 3×34=102 S3も考える. 3の倍数で最大のものは、 3×66-198 100 200 -≤ns- 66-34+1=33 (個) であるから、3の倍数の個数は, したがって, S は、 初項 102. 末項198, 項数33の等 差数列の和だから, 3 を満たす 最大のnは66, 最小の は 34 (6-8)s S₁ =- 133(102+198)=4950 99, 102,..., 198 第33 第34 第66 同様にして, S2 は, 初項 100, 末項 200, 項数21の等 差数列の和だから, 個目 個目 |個目 S2=12121(100+200)=3150 S3 は,初項 105, 末頃 195, 項数7の等差数列の和だ から、 (66-34+1)=(66-33) 個 より, 頭数は33 (33個目までを引く) 100=5×20 101-1200=5×40 S=127(105+195)=1050 よって、求める和をSとすると、 S=S+S2-S3=4950+3150-1050=7050 40-20+1=21 より, 項数は21 105=15×7 195=15×13 13-7+1=7 より,項数は7 Focus んの倍数 自然数の倍数は公差の等差数列

解決済み 回答数: 1
数学 高校生

青いところの式の変換が分かりません

3つの不等式≧ 0, y≧0 2x+y/2n (nは目然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k=0, 1, ..., n) 上にある格子点) (x座標もy座標も整数の点)の個数をんで表せ。 (2) Dに含まれる格子点の総数をnで表せ. 精講 計算の応用例として, 格子点の個数を求める問題があります。こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて 上げることもできますが,このように, nが入ってくると数える手段を知ら ないと解答できません. その手段とは,ポイントに書いてある考え方です。 ポイントによれば, 直線 y=k でもできそうに書いてありますが、 こちらを 使った解答は (別解) で確認してください。 解答 (1) 直線 x=k上にある格子点は 2n x=k (k, 0), (k, 1), …, (k, 2n-2k) の (2n-2k+1) 個. 2n-2k 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I n 2 (2n-2k+1) 22 = k=0 n+1 {(2n+1)+1} 2 =(n+1)2 ◆等差数列で ◆等差数列の和の公式 注 計算をする式がんの1次式のとき、その式は等差数列の和を しているので、12/2(a+αm) (Ⅲ)を使って計算していますが、もら ろん、(2n+1)-2々として計算してもかまいません。 k=0

解決済み 回答数: 1
数学 高校生

(1)のところで2つ質問です。  ①【ヒント】のところに書いてある総和を出すところで波線を引いているところがわからないです。 ②最後の総和は全て足し算なのではないですか?何故かけ算なのですか?

(1) 540 の正の約数の個数を求めよ。 ただし, 1 および 540 も, 540 の約数 (久留米大*) である。さらに,これら約数の総和を求めよ。 (2) 2"5" (m, n は整数) の形の整数で100以下であるものはア個あり、 (長岡技科大) それらの総和はイである。 ヒント! (1) 540=22×33×5と素因数分解すると, 約数の個数が計算できる。 その総和は等比数列の和の積の形になる。 参考 18の約数の個数について, 0,1 0,1,2 18=20×32より, (i) 2 の指数は0,1と2通りに, (ii) 3の指数は 0,1,2と3通りに 変化する。 ∴約数の個数は2×3=6個ある。 次に,これらの約数の総和は, 2°×3°+2°×3'+2x32 {2°の系列 +2' × 3° +2' × 3' +2'×32-2′の系列 =2°(3°+3'+32) +2'(3°+3' +32 ) =(2°+2')(3°+3'+3') (キレイな形!) =(1+2)(1+3+32) =39 となる。 (1)540 を素因数分解して (0, 1, 2) (0, 1, 2, 3] (0, 1 540=22x30x50 よって, 540 の約数の個数は, 3 × 4×2= 24 さらに,これら24個の約数の総和S は, S=2° 3°.5°+2°35' . + 2° 3′.5° + 2°3'5' +2233.5°+22・3'5' なんでかけ算? これをまとめて キレイな形 S=(1+2+22) (1+3+3²+3)(1 =7×40×6=1680........ (2) 2"5" ≦100(m,n:0以上の整数 これは整数なので,m,n が負に なることはない (i)n=0のとき, 2" ・5°=2" ≤ 10 m=0,1,2,3,4,5,6 の7通 (ii) n=1のとき、2" 5' = 5.2" s • m=0,1,2,3,4の5通り () n=2のとき,"52=252" m=0,1,2の3通り 以上(i)(i)(Ⅲ)より,求める2" の形の整数で100以下のものは, 7 +5 + 3 = 15個存在する。・・・(ア) 次にこれらの総和Tは, T=5°(2°+2'+2' + ・・・ + 2° + 5'(2° + 2 ' + … + 2 + 52(2° +2'+22) =(1+2+4+8 + 16 +32 + 64 +5 (1 + 2 +4 +8 +16) + 25 · ( 1 + 2 + 4 ) = 127 + 155 + 175 =457...(イ)・

解決済み 回答数: 1