学年

教科

質問の種類

数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1
数学 高校生

(2)なのですがなぜ<ではなく≦なのでしょうか? Aの範囲も含んで良いのですか? よろしくお願いいたします。

を 490. 基本 例題 38 (ア) ANB (イ) AUB (1) 次の集合を求めよ。 (2) ACCとなるんの値の範囲を求めよ。 2→3→△ 実数全体を全体集合とし, A={x|-2≦x<6}, B={x|-3≦x<5}, C={x|k-5≦x≦k+5}(kは定数) とする。 不等式で表される集合の歌 00000 は 370 370 470 B479 AUB 68 基本事項 1 CHART & SOLUTION 不等式で表された集合の問題 数直線を利用 集合の要素が不等式で表されているときは、集合の関係を数直線を利用して表すとよい。 その際,端の点を含む(≦, ≧)ときは● 含まない (<, >) ときは○ で表しておくと,等号の有無がわかりやすくなる (p.55 参照)。 例えば,P={x|2≦x<5} は右の図のように表す。 2 5 x 解答 (1) 右の図から (ア) A∩B={x|-2≦x<5} (イ) AUB= {x|-3≦x<6} (ウ) B={x|x<-3,5≦x} (エ) AUB={xlx<-3, -2≦x} (2)ACCとなるための条件は -B- -B- -3-2 56 x 2章 補集合を考えるとき 端の点に注意する。 〇の補集合は ● ●の補集合は○ 5 集 集合 C ・A k-5-2 ① k=1のとき x 6≦k+5 C={x|-4≦x≦6} (2 k-5-2 6 k+5 が同時に成り立つことである。esk=3のとき C={x|-2≦x≦8} UB ①から k≦3 ②から 1≦k であり、ともにACC 共通範囲を求めて 1≦k≦3 を満たしている。 8=0

解決済み 回答数: 1
数学 高校生

(2)の下線部がわかりません。どなたか教えてください🙇‍♀️

満た (1) 2次方程式 x2-2x+3=0 の2つの解をα,βとするとき,次の2数を解とする 2次方程式 を1つ作れ。 PR ②47 (ア) α+1,β+1 (イ) 1 1 a' B (ウ) 3,3 ②p, gを0でない実数の定数とし、 2次方程式 2x2+px+2g=0 の解をα,βとする。 2次方 程式 x2+qx+p=0 の2つの解がα+ β と αβであるとき,, gの値を求めよ。 (1) 2次方程式 x2-2x+3=0 において,解と係数の関係によ り a+β=2, aβ=3 (ア) (a+1)+(β+1)=(a+β)+2 =2+2=4 (a+1) (B+1)=aß+(a+β)+1 =3+2+1=6 よって, α+1, β +1 を解とする2次方程式の1つは + x²-4x+6=0 1 1 a+B 2 11 1 1 (イ) a B 3' aẞ a B aβ 3 1 よって, を解とする2次方程式の1つは a' B 4 x²-- 両辺に3を掛けて 3x²-2x+1=0 ←2数 α+1,β+1 の 和と積を求める。 x²-(和)x+(積) = 0 2数 1/ 1/3の和と積 a を求める。 B 各係数を整数にする。 2章 PR 7.13=1 =0 しても (ウ) '+3=(a+β)3-3aß(a+β) =23-3.3.2=-10 α''=(ab)=33=27 よって, 3, B3 を解とする2次方程式の1つは x2+10x+27=0 (2) 2次方程式 2x2+px+2g=0 において, 解と係数の関係 により a+B=-P 2 ①, ab=a 2次方程式x'+x+p=0の解がα + β, aβ であるから, 2数α3, 3 の和と積 を求める。 a 2つの解の和と積。 4つの式 ① ~ ④から α, βを消去 ⑤ 解と係数の関係により (a+B)+αB=- (a+B)aẞ=p ③に代入して 6+α=-g 2 すなわち p=4q ① ② を④に代入して すなわち pq=-2p ...... 0 であるから,⑥ より 9=-2 ⑤に代入して p=-8 これらはカ≠0, g≠0 を満たす。 以上から、 求めるp, q の値は p=-8,g=-2 p(q+2)=0 条件を確認する。

解決済み 回答数: 1
数学 高校生

統計的な推測 Zは近似的にN(0,1)に従うと書いてある場合と普通に ZはN(0,1)に従うと書いてある場合があります。 この二つをどう使い分ければいいのか教えてください。

基本例 例題 母平均 0. 88 大数の法則 - 555 00000 母標準偏差をもつ母集団から抽出した大きさんの標本の標本平均 ýが0.1以上0.1以下である確率 P(|X|≦0.1) を, n=100, 400, 900 の各場 合について求めよ。 指針 ・基本 80, p.549 基本事項 m=00=1であるから、標本平均又は近似的に正規分布 N (0, 1/2)に従う。 n=100, 400, 900 の各場合について, 正規分布 N(m,d')はZ=X-mでN(0, 1)へ[標準化] に従い, 確率 P (|X| ≦ 0.1) を求める。 O n=100,400,900 は十分大きいと考えられる。 解答 n=100 のとき,X は近似的に正規分布 N(0, 100) に X 従うから,Z= 1 10 とおくと, Zは近似的にN(0,1) に従う。 よって P(|X|≦0.1)=P(|Z|≦1)=2p(1) =2.0.3413 =0.6826 P(X|≦0.1) =P(0.1) =P(|Z|≦1) n=400 のとき,Xは近似的に正規分布 N0, に 400 X 1 20 従うから, Z= とおくと, Zは近似的にN(0, 1) に従う。 よって P(|X|≦0.1)=P(|Z|≦2)=2p(2) 2章 母集団と標本 ①~③ から, nが大きくな るにつれて =2•0.4772 =0.9544 n=900 のとき,X は近似的に正規分布 N(0, 900 1 に 検討 ☑ 従うから, Z=- とおくと, Zは近似的に N(0, 1) 78.0 30 に従う。 よって P(|X|≦0.1)=P(|Z|≦3)=2p(3) =2.0.49865 =0.9973 ③ P(X|≦0.1) が1に近づくこと,すなわ 大数の法則が成り立つ (標本平均 Xが母平均 0 に 近い値をとる確率が1に近 づく)ことがわかる。 練習 さいころを回投げるとき、1の目が出る相対度数を R とする。n=500, 2000, 88 4500の各場合について, PR--//sono) の値を求めよ。

解決済み 回答数: 1
数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1