学年

教科

質問の種類

数学 高校生

(2)が分かりません💦 学校ではここの解き方ではなく、傾きを使って解いていたんですが理解出来ませんでした😭 傾きを使った方法で教えて頂けませんか?🙇🏻‍♀️🙇🏻‍♀️

三角比を含む不等式の解法の100000 補充 例題 117 0°≧0≦180°のとき,次の不等式を満たすの範囲を求めよ。 √3 (1) cosA> (2) tan≧-1 2 CHART & SOLUTION 三角比を含む不等式の解法まずとおいた方程式を解く √3 2 まず (1) cose- (2) tan0=-1 を解く。 次に、下記の座標に注目して、 不等式を満たすの範囲を考える。 sin の不等式 半径1の半円上の点Pのy座標 COS の不等式・ 半径1の半円上の点Pのx座標 tan の不等式・ 直線 x=1 上の点のy座標 (2) tanについては, 090° であることに注意する。 解答 (1) 図において, cos0 はPのx座標 であるから、x座標が より 大きくなる0の範囲を求める。 √3 まず,cosθ=- を満たす0を 2 求めると 0=150° よって, 図から求める0の範囲は 0°≤0<150° (2) 図において, tan0は直線x=1 上の点Tのy座標で表されるから, 点Tのy座標が-1以上である の範囲を求める。 まず, tan0=1を満たす0を求 めると 0=135° よって, 図から求めるの範囲は 0°≤0<90°, 135°≤0≤180° P YA 150° √3 2 10 YA 1 O P T P 135° 1 11 x y OL x 基本112 (Px座標が より大きくなるのはP が半円周上で,直線 x=-1 より右側にあ 2 る場合。 すなわち母が 0°以上150° より小さい 場合。 (2) Ty座標が-1以上 になるようなPの存在範 囲を正確に求める。 tan 0 では0=90° である から 0° ≤0≤90° と90°に等号をつけない ように注意する。

回答募集中 回答数: 0
数学 高校生

高一数学Iの三角比の問題です。 解き方を教えてください!

9. 次の会話の空欄にあてはまる数を入れよ。ただし,43と44は、 それぞれ下の記号 (ア)~ (ウ)から選べ。 【知識・技能】 【思考・判断・表現】 【主体的な学習】 解答番号43~50 三角形の辺の長さの求め方について、先生と太一さん,千晴さんが話し合っています。 -- 先生: 教科書p.105 の例2や問3では,「2辺とその間の角の大きさ」がわかっている場合に、残りの辺の長さの求 め方を学習しました。 太一:はい、覚えています。 余弦定理に与えられた辺の長さや角度を代入して、残りの辺の長さを求めました。 先生:では, 「2辺とその間にはない1つの角の大きさ」がわかっている場合には,残りの辺の長さを求めることが できるでしょうか。 千晴: 私はできると思います。 教科書p.103 の例題1問2では,正弦定理を使って辺の長さを求めました。 先生:そうですね。 でも、そのときに与えられた条件は、 「1辺と2つの角の大きさでしたね。 次のような場合に, 同じように正弦定理を利用して辺の長さを求めることはできますか。 (問題) △ABCにおいて,a=7,b=8,4=60°であるとき,c を求めよ。 千晴 : うーん・・・・。 正弦定理を使うと, sinB の値は求まりますが,辺の長さを求める式は作れそうにありません。 先生:そうですね。 では, 余弦定理を使うとどうでしょうか。 千晴:余弦定理を使ってを求めるから,式「=43」を使うのかな。 でも, わかっているのは4の大きさだよね。 太一:じゃあ、4の大きさを利用できる式 「44」を使ってみたらどうかな。 先生:では, その式を使って解いてみてください。 途中で2次方程式が出てきますので、解き方を思い出しながら 考えてみましょう。 [解] 余弦定理により, 45=46+c²-2・46・ccos47° 43 この式を整理すると,48c+49=0 cについての2次方程式を解くと, (c-3) (c-50)=0 千晴:解けました。 の値は2つあるんですね。 太一:cが2つあるということは, 与えられた条件を満たす三角形は2通りあるということですか。 先生:その通りです。 実際に図をかいて確かめてみましょう。 (ア) 62+&-2bccosA (1) ²+a²-2cacosB 44 45 46 よって,c=3,50 47 48 () a²+b²-2abcosC 49 50

回答募集中 回答数: 0
数学 高校生

黄チャートの問題について質問です! 解説下部の蛍光ペンで引いた部分について、なぜ2<なのか教えていただきたいです。2‪√‬15が0<x<20の範囲内にあることを証明したいのはわかりますが、なぜここが2なのかわかりません。2‪√‬15は7と8の間にあるので17、それか、前の... 続きを読む

つよう 2次方程式の応用 基本例題 80 右の図のように,BC=20cm, AB=AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm²となるとき,辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 等しい関係の式で表しやすいように、変数を選ぶ 解答 FG = x とすると, 0 <FG <BC であるから 0<x<20 また, DF=BF=CG であるから 2DF=BC-FG DF= 20-x 2 長方形 DFGE の面積は よって ...... 20-x 2 ② 解が問題の条件に適するかどうかを吟味 FG = x として, 長方形 DFGE の面積をxで表す。そして、面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて •x=20 x2-20x+40=0 DF・FG= =10±2√15 ここで, 02√158 から B PRACTICE 902 D EF x=-(-10)±√(-10)2-1・40 よって,この解はいずれも①を満たす。 したがって FG=10±2√15 (cm) F 20-x ・x 10-8<10-2√15 <20, 2<10+2√15 <10+8 B A U=(5-3)(S-1 E D G C F E G 基本 66 定義域 會∠B=∠C=45°であるか ら, BDF, ACEG も直 角二等辺三角形。 ←解の吟味。 xの係数が偶数 → 26′型 3章 02/15=√60<√64=8 単位をつけ忘れないよう に。 9 2次方程式

回答募集中 回答数: 0
数学 高校生

別解においては z+1/z^2 が実数である条件に|z|=1を組み込んでいるのでそのまま式変形したら二つの条件を満たす解が出てくると思います。 もう一つの方は |z|=1よりzzー=1 を使ってz+1/z^2 が実数である条件に|z|=1を組み込んでいるのにそのまま別解のよ... 続きを読む

類 東北学院 は条件を 3 =z-3 a-B|=1 上の3点 が2の正 2√3 重要 例題 5 複素数の実数条件 z+1 学院大学 絶対値が1で , 指針> z+1 解答 すなわち 両辺に(z) を掛けて よって |z|=1 より zz=1であるから z+z²=2+(z)² ゆえに zzz(z)=0 なお,よって を掛けてゆえに よい。 複素数 αが実数⇔ α =α を利用する。 (2+1)=2+1 から得られるz, えの式を,|2|=1 すなわち=1 を代入することで簡単 121=1 → にする。 なお、 z=1から得られる z=- またはえ=1/2 を利用し,zのみまたはえのみ の式にして扱う方法も考えられる。 が実数であるための条件は z+1_z+1 [1] z-z=0のとき α+β [1][2] から 65 この方程式を解くと 練習 が実数であるような複素数zを求めよ。 別解 zz=1から (z_z) (1+z+2)=0 zz = 0 または 1+z+z=0 z=±1. A z+1 x= z²(z+1)=(z)²(z+1) 2.2z+2²=2.2z+(z)² 2 別解 Z=2 よって, z は実数であるから, |z|=1 より z=±1 [2] 1+z+z=0のとき 2+2=-1&dtß = ~ また, z=1であるから, z, は2次方程式x2+x+1=0のx²-(和)x+(積) = 0 解である。 dB=~ -1±√√3i 2 == 2 2+2²=2+1 −1± √√1²-4∙1 2・1 z+1 22 よって -1± √√3 i 2 z+1 ゆえに, Aは よって これを解いて z=±1, · 121=1==122=1&11711172 (2+1) = 2#12 #1112113 ztl ztl Z2 両辺に2を掛けて (z+1)(z-1)(z2+z+1)=0 -1±√3i 2 αが実数⇔ α =α (B)=²₁ a²=(a)² 00 z-z+(z+i)(z_z)=0 α, β が複素数のときも αβ = 0 ならば = 1/2 + ( ²¹2 ) ² = ²² 基本2 が成り立つ。 α = 0 または β=0 =2+z 2³ (2+1)-(2+1)=0 12³-1 z2z(z+1)=z+1 解の公式を利用。 ZZが解となっているがつに仕え という複素数がに11,ERS 満たしてるのでその手ま答えになる つまり、変形した式ははにし、基E脂満たす複素数の式 絶対値が1で、2-zが実数であるような複素数zを求めよ。 =(z-1)(z2+z+1) 17 1章 複素数平面 [類 関西大] (p.18 EX6

回答募集中 回答数: 0
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0
物理 高校生

(エ)で「転倒し始める時はT'=0、あるいはN'=0」とあってT'=0としてるんですけど(カ)のT''って0じゃないのですか? (出典:難問題の系統とその解き方)

例題1 剛体のつりあい ① 次の文中の ] に適する数値(負でない整数) をそれぞれ記入せよ。 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に、質 量の無視できるロープCによって取りつ けられた構造物がある。物体Aと地盤B とは、接触しているだけである。 物体Aの質量:m=1.0×10° 〔kg〕, 重力 加速度の大きさ:g=10[m/s²], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数:μ=1/3, 2の値:1.4とし,ロープCは十分強く, 伸び縮みしないものとする。 (1) 静止しているとき, ロープCの張力は (ア)[ 盤Bが物体Aに作用する抗力の大きさは (イ) × 10°Nであり、地 × 10°Nである。 (2) 地震によって,次第に強くなる上下動(鉛直方向の動き)が起こ り,ある加速度が物体Aにはたらいたら,物体Aが転倒(物体Aが 地盤Bに対して,すべり・離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り,ロープCの張力は (エ)[ × 10°Nである。 (3) 地震によって、次第に強くなる水平動が起こり、ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照)を起こし始めた。 その加速度の大きさは (オ) m/s' であり, ロープCの張力は (カ) ×10°Nである。 〔東京理科大・改] 考え方の キホン y A hor 4m 45° + 2m. C B 力学において最も重要なことは、力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。次に,適当な点のまわりの力のモーメントのつりあい この式をつくる。 あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので, はじめからその 値をμN とおいてはいけない。 まず, 未知数として文字で表し (例えばF), つ りあいの式を解いて F の値を求めてから, FUN の条件を課せばよい。 また, 力のモーメントのつりあいの式は, 任意の点のまわりのモーメントで考えてよい が,なるべく計算が簡単になるような点を選べばよい。 すなわち、ある力の作用 線上の点を ントになるので計算が楽である。 水平面 カ学 2 3 波動

回答募集中 回答数: 0