学年

教科

質問の種類

数学 高校生

高校数II2次方程式の解の存在範囲です。 下の写真の問題の(2)で、どうして赤波線で示した式になるのかがわからないです! どなたか教えてください🙇‍♀️

82 基本 例題 49 2次方程式の解の存在範囲(2) 300000 についての2次方程式(a+6=0が次のような解をもつよう な実数 αの値の範囲をそれぞれ求めよ。 (1) 2つの解がともに2以上である。 (2) 1つの解は2より大きく、他の解は2より小さい。 CHART & SOLUTION Op.76 基本事項 5. 基本 48 重要 4x2 定 CH 実数解 α β と実数の大小 a-k, β-kの符号から考える (1) 2以上とは2を含むから、等号が入ることに注意する。 a≥2, B≥2 (a-2)+(B-2)≥0, (a-2)(B-2)≥0) (2)α<2<β または β <2<α (α-2) (B-2) <0 解答 x2-(a-1)x+a+6=0 の2つの解をα, βとし, 判別式を Dとすると D={-(a-1)}2-4(a+6)=a2-6a-23 解と係数の関係により α+β=a-1, aβ=a+6 (1)≧2,B≧2 であるための条件は,次の① ② ③ が同 時に成り立つことである。 D≧0 (a-2)+(B-2)≥0 (a-2)(B-2)≥0 ① E+ ① 513 inf 2次関数 f(x)=x2-(a-1)x+a+6 このグラフを利用すると (1) D≧0, (軸の位置) ≧ 2, ƒ(2)≥0 a-1 2 D f(2) ①から a²-6a-23≥0 ゆえに a≦3-4√23+4√2 ≦a ②から at β-40 ゆえに よって a≥5. ⑤ ③から aβ-2(a+β)+4≧0 ゆえに a+6-2(a-1)+4≧0 ④ ⑤ ⑥ の共通範囲を求めて ・④ (a-1)-4≥0 よって a≦12... ⑥ 3+4√2 ≦a≦12 (2)α<2<β または β < 2 <αであるための条 3-4/2 件は(α-2)(B-2)<0 よって α+6-2(a-1)+4<0 これを解いて α>12 B 2 (2) f(2)<0 (p.765 補足 参照) 5 3+4/2 12 a ←このとき, D>0 は成り 立っている。 (p.754 解説 参照) 2 (x

未解決 回答数: 0
数学 高校生

赤い〰︎︎について。(α-1)+(β-1)>1かつ(α-1)(β-1)>1は何故ダメなんですか? 青い〰︎︎について。(α-3)(β-3)<0になる理由が分かりません💦🙇‍♂️

値 事項■ 89 2章 解と係数の関係、解の存在軍 基本 52 2次方程式の解の存在範囲 2次方程式 x2-2x+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 指針 2次方程式 2px ++2=0 の2つの解をα,β とする。 (1)2つの解がともに1より大きい。 →α-1>0 かつβ-1>0 /p.87 基本事項 2 (2)1つの解は3より大きく,他の解は3より小さい。→α-3とB-3 が異符号 以上のように考えると,例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし,判 | 別解 解答 別式をDとする。 解と係数の関係から =(-)-(p+2)= p²-p-2=(p+1)(p-2) 2次関数 f(x)=x2-2px+p+2 のグラフを利用する。 D =(p+1)(p-2)≥0, で学 フを (1) a+β=2p, aβ = p+2p 軸について x=p>1, )=80 3&f(1)=3-p>0 から 2≦p<3 (1) α>1,ß>1であるための条件は DO かつ (0-1)+(6-1)かつ(-1)(-1)0 35 do D≧0 から よって (p+1)(p-2)≥0 p≦-1,2≦p ①-e-(8-8)8-(8-10 (α-1)+(β−1)>0 すなわち α+β-2>0 から 2p-2>0 よってp>1 x=py=f(x) 23-p + a P (α-1) (B-1)>0 すなわち αβ-(a+β) +1>0 から Op+2-2p+1>01) (- よって p<3.. ...... ③ 求めるかの値の範囲は, 1, 2, ③の共通範囲をとって 30 2≤p<3 e-)-(8-8 1 1 B x (2)(3)11-5p < 0 から 12 3> (2) α <β とすると, α<3 <βであるための条件は (a-3)(B-3)<0 αβ-3(α+B) +9 < 0 p+2-3・2p+9 < 0 すなわち ゆえに よって b> 1/14 題意から、α =βはあり えない。 2つの 350 0 と です。

解決済み 回答数: 1
数学 高校生

次の(2)と問題で何故青線は変わっているのでしょうか?上の青線のままだと(ア)のk=0に当てはまってしまうため分けているのでしょうか?解説お願い致します🙇‍♂️

7 解の判別 (I) 次のxについての方程式の解を判別せよ. ただし,kは実数と する. (2) kx²-4x+k=0 1x (1) x2-4x+k=0 講 「解を判別せよ」 とは, 「解の種類 (実数解か虚数解か) と解の個数 について考えて, 分類して答えよ」 という意味です.ということは, (1)(2)も2次方程式だから, 「判別式を使えばよい!!」 と思いたくな ですが、はたして・・・・・・. 解答 D (1) z-4z+k=0 の判別式をDとすると, 201 -=4-k だから, この方程式の解は次のように分類できる. (i) 4-k<0 すなわち, k>4のとき <D<0 D<0だから, 虚数解を2個もつ (ii) 4-k=0 すなわち, k=4 のとき D=0 だから, 重解をもつ |D=0 (i) 4-k>0 すなわち, k<4のとき D>0 だから, 異なる2つの実数解をもつ (i)~ (ii)より, k>4 のとき, 虚数解2個 k=4 のとき, 重解 k<4 のとき, 異なる2つの実数解 (2) (ア)=0 のとき <D>0 次のように分類できる. (i) 4-k<0 すなわち, ん<-2, 2<kのとき D<0だから, 虚数解を2個もつ (ii) 4-k=0 すなわち, k=±2 のとき D=0 だから重解をもつ (ii) 4-k0 すなわち, -2<k<2 のとき D>0 だから, 異なる2つの実数解をもつ (ア)(イ)より, k= 0 のとき, 実数解1個 k<-2,2<kのとき, 虚数解 2個 k=±2 のとき, 重解 -2<<0,0<k<2のとさ, 異なる2つの実数 注 (2)のk=0 の場合と k=±2 の場合は,いずれも ているという意味では同じように思うかもしれませ の重解は活字を見てもわかるように元来2個あるも を指し, 1次方程式の解は、元来1個しかないのです は区別して書かないといけません. 仮に, 「kx2-4.コ 解をもつ」 となっていたら 「k≠0 かつ D=0」 とな 問題文の1行目をよく読んでください. 「次のxについての方程式 ......」 とありま いての2次方程式・・・・・・」 とは書いてありま の方程式は k= 0 となる可能性が残されているので のxについての2次方程式・・・・・・」 となっていたら, 前提になっていることになり, 解答の (ア) は不要とな <k=0 のときは2次 ポイント 与えられた方程式は 4.x=0 方程式にならないの .. x=0 で, 判別式は使えな 判別式は2次方程式でなければ使えな 数が文字のときは要注意 (イ)=0のとき kx2-4x+k=0 の判別式をDとすると い D -=4-k だから,この方程式の解は 4 演習問題 17 kを実数とするとき, 次の2次方程式の解を (2) kx2-2kx- (1) x2-(k+1)x+k²=0

解決済み 回答数: 1
数学 高校生

この空白がわかる方いらっしゃいましたら教えてほしいです。

太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。α+β=4, a2+β2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2の係数が1であるとき, 2数α, βを解とする2次方程式は x2+ コx+ロコー =0であるから, αβ の値がわかればいいんだよね。 花子 : αβ を求めるために, α2+2=-10が利用できそうだね。 太郎: 本当だ。α+ βを2乗するとαβ が現れるから,aβ を a+β,a2+β2 を用い てすと αβ だね。 花子: 数値を代入すると,αβ= だね。 つまり,答えの1つは |=0 だね。 太郎: 他に考え方はないかな。たとえば, α+β=4 から, 実数 p を用いて,求める 2次方程式をx-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2士, となるね。 たとえばα=2+ β=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎: 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0
数学 高校生

(2)の問題で①、②で出てきた-a、bをx=-a、bとして二次方程式x2乗+bx+aに代入すると、a=-2分の1、b=2分の1という新しい答えが出てきました。何が間違っているのか教えてください🙇‍♀️

80 基本 例題 47 2次方程式の作成 & 00000 (1) 2次方程式 x2+3x+4=0 の2つの解をα, β とするとき, α', ' を解 とする2次方程式を1つ作れ。 (5) (2) a<b とする。 2次方程式 x2+ax+b=0 の2つの解の和と積が、2次 方程式 x2+bx+α=0 の2つの解である。 このとき, 定数a, bの値を求 めよ。 MC p.75 基本事項 3 基本44 基 CHART & SOLUTION 2次方程式の2つの解の関係 解と係数の関係を書き出す (1) 2数α2β2 を解とする 2次方程式の1つは x2-(α2+β2)x+α2B2=0 | 積 (2)2つの2次方程式の解と係数の関係を書き出し, a, b の関係式を導く。 解答 (1) 解と係数の関係により a+β=-3, aβ=4 =1 よって2+2=(a+β)2-2aß=(-3)2-2・4 EL (8) 12 α, β は2次方程式 x2+3x+4=0 の2つの解 a², B². 21 21 α2β2=(aβ)2=42=16 ← 2数 2, B2 の積。 ゆえに, 求める2次方程式の1つは x2-x+16=0 (2) 2次方程式 x2+ax+b=0 の解をα, β とすると,解と 係数の関係により α+β=-a... ①, aβ=6... ② 2次方程式 x2+bx+α=0 の解がα+ β, aβ であるから, 解と係数の関係により (a+β)+αβ=-6, (a+β)aβ=a ① ② を代入して -a+b=-b... ③, -ab=a ・・・ ④ すなわち a(1+b)=0 ④から a+ab=0 2つの解の和と積。 上の4つの式 (赤字) か らα, β を消去。 よって α = 0 または b=-1 [1] α = 0 のとき ③ から 6=0 これは α <b を満たさない。 ← ③ から a=2b [2] b=-1 のとき 条件を確認する。 ③ から a=-2 これは a<bを満たす。 [1], [2] から a=-2,b=-1 PRACTICE 47 (1) 2次方程式 x²-2x+3=0 の2つの解をα, β とするとき,次の2数を解とする 2次方程式を1つ作れ。 (ア) α+1,β+1 (イ) 1 1 a' B (ウ) 3,3 (2)pg を 0でない実数の定数とし 2次方程式 2x'+x+2g=0の解をα,βとす る。2次方程式 x2+qx+p=0 の2つの解がα+β と αであるとき,pg の値を 求めよ。

解決済み 回答数: 1
数学 高校生

青チャート例題38(2)(3)より2次式の解の種類について質問です。 Kの場合わけしないといけないのは分かるのですが何故(2)は実数全てにおいて異なる二つの実数解になるんですか? (3)のように>0、=0、<0で場合分けする必要はないんでしょうか? また(2)のような答えに... 続きを読む

68 88 基本 例題 38 2次方程式の解の判別 0000 (3)x2+2(k-1)x-k2+4k-3=0 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 2x²-(k+2)x+k-1=0 (1) 3x²-5x+3=0 基 k p.66 指針 2次方程式 ax2+bx+c=0の解の種類は, 解を求めなくても, 判別式D の符号だけで 別できる。 異なる2つの実数解 質 公小 2次方程式の解の判別 D=0⇔重解 重解はx=- 2a D0⇔異なる2つの虚数解 解答 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は,(1)と変わらないが がkの2次式で表され,kの値による場合分けが必要となることがある。………… 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3= -11<0 をも よって、異なる2つの虚数解をもつ。 つの (2) D={-(k+2)}-4・2(k-1)=k+4k+4-8(k-1) =k-4k+12=(k-2)2+8 ゆえに、すべての実数kについて よって、異なる2つの実数解をもつ。 する D>0 (3) 1/2=(k-1)^-1.(k+4k-3)=2k²-6k+4 =2(k2-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2 <kのとき 異なる2つの実数解 D = 0 すなわち k=1, 2 のとき 重解 D<0 すなわち 1 <k<2のとき 異なる2つの虚数解 D<0 一D>0」 CHES OF T {-(k+2)}2 の部分は, (1)2 =1なので, (+2 と書いてもよい。 1+CIDA ax2+2b'x+c=0 では D 4 α <βのとき 利用する (x-α)(x-B)>0 ⇔x<a, B<x α <βのとき (x-α)(x-B)<0 ⇒a<x<B D>0- 2 練習 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 31-12x 指

未解決 回答数: 1
数学 高校生

赤で色をつけている263の解き方が分からないので(1)を教えてくださいm(*_ _)m 範囲を求めるところ(〜この2次方程式の解は1-√5<x<1+√5)まではわかります

例題 2次不等式の解から係数決定 2次不等式 ★★ 66 2次不等式 ax2+bx+4>0 の解が -2<x<1 であるように,定数 α, bの値を定めよ。 +c>0 y. 解答 2次不等式 ax2+bx+4>0 の解が-2<x<1 である ための条件は, 放物線 y=ax2+bx+4 が上に凸で, 4 10 x x軸と2点 (-2, 0, 1, 0) で交わることである。 よって a<0 a+b+4=0 ② ③ を連立して解くと ①, 4a-26+4 = 0 ...②, (3) α=-2,6=-2 (これは ①を満たす) 答 B *263 次の不等式を満たす整数xの値をすべて求めよ。 (1)x²-2x-4< 0 (2)1<x2+2x≦2x+16 x 264 次の条件を満たすように、定数 α, 6の値を定めよ。 (1)2次不等式x2+ax+b>0の解が x <-2, 1 <x (2)2次不等式 ax2+2x+6<0 の解が-3<x<1 * (3) 2次不等式 ax2+bx+6>0の解が -1<x<2 例題 66 265 2次関数 y=x2-4ax+3a+1 のグラフの頂点が第3象限にあるとき, 定 数αの値の範囲を求めよ。 *266 2次関数y=-x2+4x+α+αについて, 1≦x≦4 の範囲でyの値が常 に正であるように、定数αの値の範囲を定めよ。 □267 次の2次不等式を解け。 ただし, a は定数とする。 (1)x2-(2a+1)x+α²+α < 0 (2)x2-(a+2)x+2a>0 B Clear □ 268 2次不等式 x2+2x+m(m-4)≧0 が次の範囲で常に成り立つような定数 mの値の範囲を求め上

解決済み 回答数: 1
数学 高校生

こちらの空白に入る答えがわかりません、、わかる方いらっしゃいましたら教えてほしいです。お願いします

問2 太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。 α+β=4, a2+B2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2 の係数が1であるとき, 2 数α,βを解とする2次方程式は x2+ x+ |=0であるから, αβ の値がわかればいいんだよね。 花子: αβ を求めるために, α2+2=-10 が利用できそうだね。 太郎:本当だ。α+ βを2乗すると αβ が現れるから,aβをa+β,a2+β2 を用い て表すと αβ= |だね。 花子:数値を代入すると,αβ= だね。 つまり,答えの1つは 0 だね。 太郎:他に考え方はないかな。たとえば, α+β=4 から, 実数を用いて,求める 2次方程式をx2-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2土 となるね。 たとえばα=2+ B=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎 : 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0