数学
高校生
解決済み

(2)の問題で①、②で出てきた-a、bをx=-a、bとして二次方程式x2乗+bx+aに代入すると、a=-2分の1、b=2分の1という新しい答えが出てきました。何が間違っているのか教えてください🙇‍♀️

80 基本 例題 47 2次方程式の作成 & 00000 (1) 2次方程式 x2+3x+4=0 の2つの解をα, β とするとき, α', ' を解 とする2次方程式を1つ作れ。 (5) (2) a<b とする。 2次方程式 x2+ax+b=0 の2つの解の和と積が、2次 方程式 x2+bx+α=0 の2つの解である。 このとき, 定数a, bの値を求 めよ。 MC p.75 基本事項 3 基本44 基 CHART & SOLUTION 2次方程式の2つの解の関係 解と係数の関係を書き出す (1) 2数α2β2 を解とする 2次方程式の1つは x2-(α2+β2)x+α2B2=0 | 積 (2)2つの2次方程式の解と係数の関係を書き出し, a, b の関係式を導く。 解答 (1) 解と係数の関係により a+β=-3, aβ=4 =1 よって2+2=(a+β)2-2aß=(-3)2-2・4 EL (8) 12 α, β は2次方程式 x2+3x+4=0 の2つの解 a², B². 21 21 α2β2=(aβ)2=42=16 ← 2数 2, B2 の積。 ゆえに, 求める2次方程式の1つは x2-x+16=0 (2) 2次方程式 x2+ax+b=0 の解をα, β とすると,解と 係数の関係により α+β=-a... ①, aβ=6... ② 2次方程式 x2+bx+α=0 の解がα+ β, aβ であるから, 解と係数の関係により (a+β)+αβ=-6, (a+β)aβ=a ① ② を代入して -a+b=-b... ③, -ab=a ・・・ ④ すなわち a(1+b)=0 ④から a+ab=0 2つの解の和と積。 上の4つの式 (赤字) か らα, β を消去。 よって α = 0 または b=-1 [1] α = 0 のとき ③ から 6=0 これは α <b を満たさない。 ← ③ から a=2b [2] b=-1 のとき 条件を確認する。 ③ から a=-2 これは a<bを満たす。 [1], [2] から a=-2,b=-1 PRACTICE 47 (1) 2次方程式 x²-2x+3=0 の2つの解をα, β とするとき,次の2数を解とする 2次方程式を1つ作れ。 (ア) α+1,β+1 (イ) 1 1 a' B (ウ) 3,3 (2)pg を 0でない実数の定数とし 2次方程式 2x'+x+2g=0の解をα,βとす る。2次方程式 x2+qx+p=0 の2つの解がα+β と αであるとき,pg の値を 求めよ。

回答

✨ ベストアンサー ✨

ごめんなさい。もう少し具体的に解き方を教えてほしです。どのように解いたのかを見せていただかないと、僕はお答えするのが難しいです。少なくともそのaとbの値は間違いです。

底辺高校生

申し訳ないです、自力で解決できました🥹
回答ありがとうございました🙇‍♀️

この回答にコメントする
疑問は解決しましたか?