学年

教科

質問の種類

物理 高校生

物理のエネルギー保存則の問題です。 この問題の(2)は等加速度直線運動の公式を使って解くことは出来ないのでしょうか?? 等加速度直線運動の公式は摩擦があると使えないということなのですか…?? 教えていただきたいです!!

34 力学 [11] エネルギー保存則 質量mの小球Pと3mの小物 体Q を糸で結び、Qを傾角30°の 斜面上の点Aに置き、糸を斜面 と平行にし、滑車にかけてPを つるす。 斜面は点Aの上側では 滑らかであるが、下側は粗く、 Qとの間の動摩擦係数は 1/3で P m Vo +1 Vo 3m → C 30° ある。Pに鉛直下向きの初速vo を与えたところ, Qもひで点Aから動 き出した。 重力加速度をgとし エネルギー保存則を用いて答えよ。 ((1) Q の達する最高点Bと点Aとの距離はいくらか。 (2) はやがて下へ滑り点Cで止まった。 AC間の距離Lはいくらか。 Level (1) ★ (2) Point & Hint Pの重力 mg よりもQの重力 の斜面方向の分力 3mg sin 30° の方が大きいので、静かに放せ →ばQ が下がりPが上がる状況。 運動方程式でも解けるが、エ ネルギー保存則で解かなければ ならないし、そのほうが早く解 ける。 !!! (1) 摩擦がないので力学的エネ Base 力学的エネルギー保存則 12m+位置エネルギー=一定 ※位置エネルギーには、重力の位置エ ネルギー mgh やばねの弾性エネ ルギー -hx2 などがある。 摩擦がないとき成り立つ。 厳密には 非保存力の仕事が0のとき成り立つ。 ルギー保存則が成り立つがPとQが糸を通して力を及ぼし合い、エネルギーの やり取りをしているので, PやQ単独では成立しない。 全体(物体系)について扱 うこと。運動エネルギーと位置エネルギーの総量が保存されるが、失われたエネ ルギー=現れたエネルギーとすると式を立てやすい。 (2) 元の位置に戻ったときの速さをまず押さえたい。 その後は摩擦があるので、摩 擦熱を取り入れ、エネルギー保存則を立てる。 摩擦熱=動摩擦力×滑った距離

未解決 回答数: 1
物理 高校生

(3)の三枚目の写真のR’-Rの式がよく分かりません

At t であ 物理 問題Ⅱ 図1のような長さL. 断面積 S, 抵抗値Rの抵抗体 X を考える。この抵抗体Xの左 右の端に大きさVの電圧をかけたとき、抵抗体Xの内部には一様な電場(電界) が生じ るものとする。 自由電子は電場から力を受けて一定の加速度で運動し、抵抗体X内の イオンなどと衝突し、 いったん静止する。 この衝突が一定の時間間隔で繰り返し起こ ると仮定すると、 自由電子の速さは時刻に対して図2のように変化する。 自由電子1個 の質量を電気量e (e>0) 抵抗体Xの単位体積に含まれる自由電子の個数を とする。 S 抵抗体 X 図 1 L 設問(1) 以下の文章が正しい記述になるように, (あ~か)に入る適切な数式をL.S.V. em,n, Tのうち必要なものを用いて表せ。 ( 抵抗体 Xの内部に生じる電場の強さは の大きさは (あ) なので,自由電子の加速度 であり自由電子の平均の速さは (う) 一方、この抵抗体Xの断面を時間の間に通過する自由電子の数は xv4t なので、この抵抗体 X を流れる電流の大きさは したがって, 抵抗体 X の抵抗率は (カ) となる。 である。 (え) (お) xvとなる。 この抵抗体 X に力を加えると,長さはL+4L (4L>0) になり, 断面積はS-AS (4S>0) になった。 この変形において、抵抗体 X の抵抗率は変化しないものとする。 ただし, LAL, S4Sとし, 1>|x|のとき (1+x)=1+pxの近似式を用い,また,微 小量どうしの積を無視するものとする。 設問(2) 抵抗体 X の長さがL+4L, 断面積がS-4Sのときの抵抗値R' を R, L, 4L, S, 4S を用いて表せ。 設問(3) 力が加わり変形しても抵抗体 X の体積が変化しないものとして, R'-R を R, L, 4L を用いて表せ。 速さ ・時刻 T 2T 3T 図2

解決済み 回答数: 2
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

>>1 圧縮 比例 1 V グラフ ら、熱 出題パターン 38 定モル比熱と定圧モル比熱 「ピストンつきの容器内に, n モルの理想気体が, 体積V1, 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱を Cvとする。 「ピストンを自由に動けるようにして、熱を与えて温度をT2にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout. 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から,気体の定積モル比熱 Cr と 定圧モル比熱 C, の間にはどのような関係があるか。 解答のポイント! 定圧変化であっても4U = Con⊿T の形となることに注意。 解法 熱力学の解法3ステップで解く。 AJR STEP1 変化の前後でのか,Vn,Tを 図示する。 ここでピストンは自由に動けるので, ピストン内の気体の圧力は大気圧とつりあって いて,いつもpとなる。 このように、大気圧、 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 4 大気圧 nTi ンでは、必ず定圧変化になるのだ。 また、後の圧力 体積を V2 (未知数) とおくと, DV2 n T2 大気 1圧 図 11-4 前 (3 p Nout 前:pV=nRT ... 1 負 後:pV2=nRT ... ② -Wout E縮 STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout V₁ V2 体積V 1). になる。 図 11-5 いる にあ STEP3 熱力学第1法則を表 (表中雪)にまとめると, Qin n(Cy+R) (T2-T, + 4U Wout Cyn (T-T) |p (V2-V)=nR(T2-T) (1②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmでn=1 [mol], T2-T=1 [K] としたものに等しく. C=1x (Cy+R)×1=Cv+R この式は理想気体であれば必ず成立するので、この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

22番の問題が分かりません…できれは詳しく説明してもらいたいです!!お願いします🙇‍♀️

3 加速度と等加速度直線運動 月 加速度 単位時間当たりの速度の変化。 加速度は、 速度と同じように大きさと向きをもつ。 T 運動。 初速度か [m/s], 加速度α [m/s]の等加速 6 等加速度直線運動 一直線上を一定の加速度で進む 加速度の単位 1秒間に速度が1m/s の割合で変化す る場合の加速度を基準にとり、 1m/s とする。 平均の加速度 時間 Jr[s] の間の速度の変化が [m/s] のとき、 平均の加速度(m/s7は 線運動で, t[s] 後の 速度を [m/s] 変 位を [m] とすると, 次の式が成りたつ。 初め [] 後 a 0 変位 速度が 速度の変化 時間 dv at v=vo+at at 【例10 等加速 30m/sの (1) 2.0秒後の物体 (2) 2.0秒後までに 解物体 [portat] *D 30+1.5× 面積 12/24 af 瞬間の加速度 平均の加速度の式で、 をきわめて 短くとると瞬間の加速度となる。 x=vot+ afa 1 Vo 面積 Bod v2-v²=2ax 時間 23. 等加速 体が、一定の □21. 平均の加速度 次の各場合について、 物体の平均の加速度はどの 向きに何m/s"か。 21. (1) 4.0 秒後の (1) (1) 一直線上を正の向きに 3.0m/sの速度で進む物体が, 4.0秒後に正の 向きに9.0m/sの速度になったとき。 (2) (2) 4.0秒後 (2) 一直線上を正の向きに8.0m/sの速度で進む物体が, 6.0 秒後に負の 向きに4.0m/sの速度になったとき。 24. た後、初 で通過し □22. 加速度 物体が静止の状態から動き始めて一直線上の運 動を続けた。 その0.10 秒後, 0.20 秒後, 0.30 秒後, ...... の到達 距離を測定して表にまとめた結果が下の表である。 22. (1) 表に記入 速さ [m/s] 3.0 時間(s) 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 距離 (m) 0 0.02 0.08 0.18 0.32 0.50 0.72 0.98 2.5 2.0 平均の速さ(m/s) (2)1.5 1.0 (1) 表の値から各 0.10 秒間の平均の速さを求め, 表の中に書き 入れよ。 0.5 0 (2) 物体の運動のv-t図をかけ。 (3) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 時間 t [s] 25. 斜面 は正 た (3) 物体の加速度の大きさは何m/s2 か。 (2) (1)で求めた平均の速さを、その時間 の中央の時刻での速さと考える。例え ば, 0.10~0.20 秒での平均の速さは, 時刻 0.15 秒での速さとみなす。 し (1)

回答募集中 回答数: 0
物理 高校生

(1)で電流がE→C1→R2→C2→Eの向きで流れるのは何故ですか?

94 15 直流回路 必解 115. <コンデンサーを含む直流回路> 抵抗 R1, R2, R3, コンデンサー C1.C2, スイッチ S1, S2 および 電池Eからなる回路がある。 R1, R2, R3 の抵抗値はそれぞれ2Ω, 4Ω 6Ωであり, C1, C2 の電気容量はともに4μF, E は起電力が 12V で内部抵抗が無視できる電池である。 最初 S は開いており S2 は閉じている。 (1) S1 を閉じた瞬間に R2 を流れる電流はいくらか。 (2) S1 を閉じて十分時間がたったとき R2 を流れる電流はいくらか。 (3) (2) のとき, C に蓄えられた電荷はいくらか。 (4) 次に, S と S2 を同時に開き, 十分時間がたった。 そのとき C に加わる電圧はいくらか。 (5) (4) のとき, R1 で発生する熱量はいくらか。 [東京電機大改] C1 S2 R3 S1 R₁ R₂ 必解 116. <電球とダイオードを含む直流回路〉 図1のように,電球, ダイオード, 抵抗値 20Ωの抵抗, および電圧 値を設定できる直流電源からなる回路を考える。 電球は図2のような 電流電圧特性をもつ。 ダイオードは図3で示すように,電圧 1.0V 未 満では電流 0A, 1.0V以上では電流 [A] = 0.20×(電圧 〔V〕 -1.0)の 電流電圧特性をもつ。 次の問いに答えよ。 (1) 電球の電流電圧特性に着目する。 電球の抵抗値は一定ではなく, 電圧や電流の値によっ 抵抗 20Ω 本 て異なる。 電球の抵抗値が26Ωになるときの, 電球に加わる電圧を有効数字2桁で求め よ。 S ダイオード 図1 電球 電源

回答募集中 回答数: 0
1/7