学年

教科

質問の種類

物理 高校生

物理、ばね、つり合い この問題の問5についてです。模範解答では、つり合いの式「mg+k(a+x)-N=0」から考えて導いていたのですが、私は物体A+B(2mg)とばね定数(k=mg/a)がつり合うことを考えて「F=kx」より「2mg=k・b」という式で答えを導きました。答え... 続きを読む

con 付け, ばねを鉛直に立てて, B を水平な床面上に置いたところ, ばねが自然の長 図5(a)のように, 軽いつるまきばねの両端に同じ質量mの物体A, B を取り さより だけ縮んだ状態でAが静止した。 B 図5(b)のように, A をつり合いの位置からさらにaだけ押し下げて静かには なすと,Bが床面に静止した状態でAは鉛直方向で単振動を行った。 重力加速度 の大きさをgとする。 kazmy 自然の長さ A m Bm 問3 次の文章の空欄 それぞれの直後の { 3 4 ばね 体Aの単振動の周期は つり合いの位置 床面 このばねのばね定数は 3 4 . my (hea) mg a 図5 mg ① 2a 3 }で囲んだ選択肢のうちから一つずつ選べ。 ② (3 1 2π 4 に入れる式として最も適当なものを, ② 2 mg a 2mg a A 2g a 9 2a Ng m ③2. m (b) a である。 したがって 物 kimg a Taza Foz となる。 T = 2h ^. kw. 厚 鹿 ひこ 問4 Aが図5(a)のつり合いの位置を通過するときの速さを表す式として正しい 5mg 5 ものを、次の①~⑤のうちから一つ選べ。 = Jag mad ① vga 2 0 √2a ga 3 my = my ² a mgenue 3 Mitwir acro ² F 問5 次にAを図5(a)のつり合いの位置から押し下げる距離を6にして静かに はなした。このとき,Aの運動中にBが床面から離れないためには,b はい くら以下でなければならないか。 最も適当なものを、次の①~⑥のうちか ら一つ選べ。 b≦ 6 a zyw² n² ③ ga 2 4 √ga 2ning=nox(base) begy 『 22 5 √3ga zazlatyu 3 √3a 42a ⑤ 15 2 6⑥ 3a

回答募集中 回答数: 0
物理 高校生

(3)のイの解説の波線部分が分かりません。 どこからlだけ長くなっているとわかるのか、どうやってこの式を出したのか教えて頂けると助かります。 

出題パターン 摩擦力を介した2物体の運動 図のように、 水平な床の上に質量Mの板Bがあり,その上に質量mの 物体Aが置かれている。 板Bと床との間には摩擦がないが, 板Bと物体A との間には摩擦がある。 静止摩擦係数をμlo, 動摩擦係数をμとし、重力加 速度の大きさを」 とする。 (i) 速さ A <DBのとき B J30 うまるち駅の条3 MAKSĀ BAGITARS ANUS Ara GENER A AN (1) 板 B に加える力FがFcより小さいとき, 物体 A と板Bは一緒に動く。 (ア)物体A の加速度はいくらか。 TOTESTI 垂直抗力N ml (イ)このとき,物体Aが板 B から受ける力のx成分はいくらか。 (2) 板Bに加える力Fを大きくしていって, 物体Aが板Bの上をすべり 出そうとするとき, 物体Aが板 B から受ける x 方向の力はいくらか。 ま た板Bに加える力F (この力がF)はいくらか。 (3) 板 B に加える力F が Fc より大きいとき,床に対する物体 A, 板 B の 加速度をそれぞれα βとする。 KO (ア)物体A板Bの運動方程式は, それぞれどうなるか。 (イ)物体Aが板Bの上を距離だけ動いて, 板Bの端に到達するまでに 要する時間はいくらか。 右へ行くな N M →DA 解答のポイント! ats “よく出る”「こすれあう2物体間に働く摩擦力Rの向き」について 図3-3 ように考えてみると, 1KO ISTR 13151S (i) BがAよりも右へいってしまうのを防ぐ向き ( ) AがBよりも右へいってしまうのを防ぐ向き になっている。つまり、摩擦力の向きはいつでも「ずれを防ぐ向き」としてシン HHOU. プルに判定することができる。 ち入り回す DB B 大 右へ行くな B 図3-3 (ii) 速さのとき A AN 6 NV R VA UB

回答募集中 回答数: 0
物理 高校生

できる範囲で教えていただきたいです

図1のようにx軸上の点A(a, 0, 0)に正の点電荷+2Qが,点B(-α, 0, 0) に負の点 電荷Qが固定されている。 以下の問いに答えよ。 ただしaは正の定数, クーロンの法則の 比例定数をk,電位は無限遠を0とする。 重力の影響, 空気抵抗, 摩擦は無視してよい。 ONE 5SOS- B(-Q) ・a 0 図 1 (1) x軸上の電場は位置により異なる。 電場の向きがx軸上で正になる区間と, 負になる区間 をそれぞれ求めよ (ただし, 点電荷のある x=a と x = α については考えなくてよい)。 また, x軸上で電場の強さが0になる x座標を求めよ。 (2) x軸上での電位Vx を位置xの関数として表せ (絶対値を用いて1つの式で表すこと)。 ま た, そのグラフの概形を解答用紙の所定の部分に描き, Vx = 0 となる x座標と, 極値があれ ば極値のx座標を求めよ。 (3) xy平面上で電位が0となる図形の式を求め、 そのグラフを解答用紙の所定の部分に描け。 -1- A(+2Q) a (4) yz 平面上の任意の点(0, y, z) での電位を表す式 Vyz を求めよ。 またyz 平面上での等 電位線として,最も適切な概略図を次の(ア)~ (カ)から選び,記号で答えよ。ただし,隣り合う 等電位線の電位差は一定であるとする。 Dagen (7) 2 (1) z (ウ) 20 2a 2a 0 2 -2aa0 -2a -2a- (カ) 2a a a 2a (エ) tary 2a y -2a-a 2a -2a- (5) x軸上で,負方向に十分離れた位置に、質量がm, 大きさがで符号が分からない点電荷 Pを置いたところ, Pは原点Oに向かって動きはじめた。 Pはx軸上だけを動くものとする。 (a) 点電荷Pの符号を答えよ。 (b) 点電荷Pはどこまで原点Oに近づくか。 そのx座標を答えよ。 (c) 点電荷Pが動きはじめてから, 原点Oに最も近づくまでの間の, 速さが最大になるx 座標と, 速さの最大値を求めよ。 - 2-

回答募集中 回答数: 0
物理 高校生

量子力学モデル(quantum mechanical model) とは何か簡単に概要だけでも教えてもらえませんか? 高校何年生でやるのかだけでも構わないので教えてください🙇‍♂️

The Bohring World of Niels Bohr In 1913WBohr proposed that electrons are arranged in concentric circular paths or orbits around the nucleus. Bohr answered in a novel way why electrons which are attracted to protons, never crash into the nucleus. He proposed that electrons in a particular path have a fixed energy. Thus they do not lose energy and crash into the nucleus. 7カje energy /eve/ of g/) e/ecro7 5 太e 7eg/O7 g7Ounの のe 70C7eus Were た5がeルfo pe. These energy levels are like rungs on a ladder, lower levels have less energy and work. The opposite is also true if an electron loses energy it falls to a lower level. Also an electron can only be found rungs of a ladder. The amount of energy gained or lost by every electron is not always the same. Unlike the rungs of a ladder, the energy levels are not evenly spaced. 4 gug/fg77 O7 ene79y 75 妨e 977Ou7た Oげ ener9y ee0eg ro 77oVe 7 e/ecfron廊O77 745 prese7t _ene/rgy 7eve/ 7O je exf jgカer oe or to make a quantum leap- The Quantum Mechanical Model Like the Bohr model, the ggg74777 776c7g77Co/ 777Oe/ leads to gugn67ze9 energy levels for an electron. However the Quantum Mechanical model does not define the exact path an electron takes around the nucleus. It is concerned with the likelihood of finding an electron in a certain position. This probability can be portrayed as a (oto sale) o @ ら oプ @ Figure 3A Classical Alomic Schematic of Carbon 党 Figure 3B New Atomic Schematic of Carbon 1 nucleus while Gtrostatc equivalents keep Envelopes separale Figure 3C New Atomic Schematic of Oxygen (Electron Envelope above page not shown) blurry cloud of negative charge (electron cloud). The cloud is most dense where the electron is likely to 人M be. ーーーーーー" 午

解決済み 回答数: 1
1/2