学年

教科

質問の種類

物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0
物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
物理 高校生

(4)(5)について質問です (4) バネが縮んでから、伸びたばねによって押し返されるところを注目するのはなぜですか?(自分はバネに届く前とd2縮んだ場面について考えようとしていました。) なぜ運動方程式で解こうと思うのですか? エネルギーでは解けないのですか? (5... 続きを読む

〔8〕 2008 山形 RS 上には,質量Mの台が垂直面 QR に接して置かれていて、台の上面が水平面PQと同一平面 図のように、水平面PQ上に、大きさの無視できる質量mの小物体が置かれている. 水平面 置かれている. ばね 1, ばね2ともにばね定数はkとし, 質量は無視できるとする. また, 水平面 になっている. 水平面 PQ 上にはばね1が, 水平面 RS上にはばね2が, 一端を壁に固定されて と小物体,台の間の摩擦は無視し,重力加速度の大きさをgとする. vo 小物体をばね1の固定されていない端に接触させ,自然長からd, だけ縮めぞ静かに手を離し た。 ばねが自然長に戻ったところで、小物体はばね1から離れ,水平面 PQ 上を右向きに速さ で運動した. Q(1) vo をm, k, d を用いて表せ. その後,小物体は速さで台に乗り移り、同時に台も動きはじめた. 小物体が台上を時間Tの 間に,台に対して距離だけすべった後、 小物体と台は一体となって水平面 RS 上を右向きに一 定の速さ △ (2) T, V をそれぞれ vo, m, M, g, μの中から必要なものを用いて表せ. (3) を vo, m, M,g,μ を用いて表せ. 台は小物体を乗せたまま, 速さ V でばね2の固定されていない端にあたった.台があたる前の ばね2は自然長であった.その後, ばね2は自然長から最大d2だけ縮み,この間, 小物体は台上 をすべらなかった.ここでは、ばね2が自然長からd2だけ縮むまでの運動を考える. 小物体と台 の間の静止摩擦係数を μo とする. (4) ばね2が自然長からæ (0<x< d2) だけ縮んだとき, 小物体と台の間にはたらく静止摩擦力 の大きさを,m, M, k, æ を用いて表せ. (5) ばね2d2だけ縮むまでの間, 小物体が台上をすべらないためには, ばね1の縮みをい くら以下にしなければならないか.m, M, k, g, μo を用いて表せ. ばね 1 100000001 P 小物体と台の間の動摩擦係数をμとする. で運動した。 小物体 a R 台 2 70000000 S

回答募集中 回答数: 0
1/4