学年

教科

質問の種類

物理 高校生

(2)について。 bc間の電圧を求めるのに、R3の抵抗を用いないのは何故ですか?

解説動画 基本例題28 抵抗の接続 (1) ac 間の合成抵抗はいくらか。 図のような電気回路について,次の各問に答えよ。 基本問題 232 233 234 R2 (2) bc 間の電圧はいくらか。 R2 の抵抗には 0.80Aの電流が流れている。このとき, 以下の各問に答えよ。 SS R₁ 6.0Ω a C R3 4.0Ω 12 (1) 第1章 電気 (3) ac 間の電圧はいくらか。 指針 2.012 (1) 並列に接続された R2, R3 の合 成抵抗を求め,その合成抵抗と直列に接続され た R との合成抵抗を求める。 (2) R2, R3は並列に接続されており,等しい電 圧が加わるので, R2 に加わる電圧を求める。 (3) ab 間, bc間のそれぞれに加わる電圧の和が, ac 間の電圧である。 (3) R3 を流れる電流を I3 とすると,オームの法 則から, V DC 13-R3 = 4.8 12 =0.40A は, R2, R3 を流れる電流の を流れる電流I 2に等しい。 L=0.80 +0.40=1.20A ac 間の電圧 Vac は, ab 間の電圧 Vab, bc 間の 電圧Vbc の和に等しい。 解説 (1) 並列に接続された R2, R3 の合==4.0×1.20=4.8V 成抵抗を R' とすると, Vac=ab+Vbc=4.8+4.8=9.6V 1 1 1 1 + 1 + R'=4.0Ω R=R+R'=4.0+4.0=8.0Ω (S) Point 電気回路の問題では, 直列接続, 並列接 続の特徴を把握することが重要である。 直列接続… 各抵抗を流れる電流は等しい。 R' R2 R3 6.0 12 ac 間の合成抵抗をR とすると, (2) 求める電圧を Vbc, R2 を流れる電流をI と すると, オームの法則 「V=RI」から, Vbc=RzIz=6.0×0.80=4.8V (各抵抗の電圧の和)=(全体の電圧) 並列接続…各抵抗に加わる電圧は等しい。 (各抵抗の電流の和)=(全体の電流)

解決済み 回答数: 1
物理 高校生

(9)はどうして赤ペンのような式になるんですか?? 私の考え方のどこが間違えてるのか教えて欲しいです🙇🏻‍♀️

II 次の文章の空欄にあてはまる数式, 数値または語句を, それぞれ記述解答用紙の所 定の場所に記入しなさい。 ただし, (1)~(10)の解答欄には数式または数値を, (11)の解答 欄には語句を記入しなさい。 (33点) 図1に示すように抵抗とコイルをつないだ回路で, スイッチSを閉じたり開いた りしたときに回路に流れる電流を考えよう。 電池の起電力をE, コイルの自己インダ クタンスをL, 2つの抵抗の抵抗値は図1のように r, R とする。 電池と直列につな がれた抵抗値rの抵抗は電池の内部抵抗と考えてもよい。 また, 導線およびコイルの 電気抵抗は無視できるものとする。 b a d E 図 1 h In R g ERO h S スイッチSを閉じた後のある時刻にコイル, 抵抗値 R の抵抗を図1の矢印の向き に流れる電流をそれぞれ I, I と書くことにする。このとき, 抵抗値の抵抗を流れ る電流は (1) となる。 経路 abdfgha についてキルヒホッフの法則を適用すれ ば、電池の起電力と回路に流れる電流の間にはE= (2) の関係が成り立つ。 一方、このときコイルを流れる電流が微小時間 4tの間にだけ変化したとすると, -10- LI+(r+B)I

回答募集中 回答数: 0
物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1
物理 高校生

教えて欲しいです。 電磁気の分野です。 1、2枚目は問題で、3枚目は解凍群です。

【4】 導 次の文章の空欄にあてはまる最も適した数式または語句を解答群の中から選びなさい。 図1のように、質量m,長さ1の導体棒ab の両端に質量の無視できる導線をつなぎ、固定さ れた水平な絶縁棒上の点c, 点dに巻きつけ, 導体棒ab が水平になるようにつるす。点cと点 dの間隔を1とし、導線 ac, bd の長さをともにする。また,aの最下点を原点Oとして図1 のように水平方向にx, y 軸を,鉛直方向に軸をとる。この装置をy軸の負の方向から見た様 子を図2に示す。 さらに、 図1の上部 線 ar か にあるように、抵抗値 R の抵抗,起電 力Eの電池、スイッチSからなる回路 を導線につなげる。 また、 図1,2のよ うに導線が鉛直方向となす角を0と し、矢印の向きを正とする。以下では 重力加速度の大きさをgとし,導体棒 と導線の抵抗 および回路abdc におけ る自己誘導は無視する。 また、導線は たるまないとし、絶縁棒と導体棒の太 さは無視できるものとする。 S p TR 9 E ZA 8 B 0 -a x 図1 d ZA r 0 図2 B a x スイッチSをq側に接続し,図1,2のように, z方向の正の向きに磁束密度の大きさがBの 一様な磁場 (磁界)をかけると、導線が鉛直方向と角度をなす状態で導体棒ab を静止させるこ とができた。このとき, 導体棒には大きさ (1)の一定の電流が流れるため、 大きさ (2)の力がx軸と平行に,x軸の (3) の向きにはたらく。 導体棒にはたらく力のつりあ いにより, はtando = (4)をみたす。

解決済み 回答数: 1
1/18