学年

教科

質問の種類

物理 高校生

物理基礎です 12と13がわかりません 解説お願いします🙇🏻 自分で解き直ししたやつ一応のせておきます

4.2 1,26 1.26 206 25'206 292 2 0.97 300) 2920 2700 5145.2× > 4.52² 44,52×10 (455 【11】 熱容量 40J/K の熱量計に 200gの水を入れ、温度を測定すると 20.0℃であった。 その中に 73.0℃に 熱した 60g の金属球を入れると,全体の温度が23.0℃で一定になった。 水の比熱を4.2J / (g・K) とする。 (1) この金属の比熱を有効数字2桁で求めよ。(40+200×4.2×3)=60x×56=0.97 200 (2) この測定後、長い時間が経過して熱が逃げ, 全体の温度が22.0℃に下がった。 この間に逃げ た熱量を有効数字2桁で求めよ。 (40+200×42×3+60×72×80) 80+252=300~ 360℃=292 て 【12】 水の入った容器の中の羽根車をおもりの落下によって回転させ、水 40+252+2910 の温度上昇を測定する。 水と容器と羽根車の熱容量は2.1×102J/K, おも りの質量は2.0kg である。 おもりをゆっくりと1.5m 落下させる実験を 7000 50回くり返したとき, 容器中の水温は何℃上昇するか。 ただし、重力加 速度の大きさを9.8m/s2 とし,重力がおもりにした仕事は, すべて温度 の上昇に使われるものとする。 22.0×2.0×10÷t=980 ( 4,2 3300 900 2260 2160 容器 2970 292 3202 ・3.2x おもり 水 羽根車

回答募集中 回答数: 0
物理 高校生

物理運動量の和の話です。(15)を求めるのですが、自分は緑で書いたように立式してしまったのですが、色々ご指摘を貰いたいです。 このワークでは反発係数を求める問題ですが、最初の速度に反発係数をかけると、後の速度が出るということが出るという事で、今回そのような立式をしました。 ... 続きを読む

13 次の文章の空欄 【11】~【15】 にあてはまる最も適当なものを、 解答群から選べ。 ただし、同じも のを何度選んでもよい。 図1のように、 なめらかな水平面上で, 速さ 3.0m/sで右向きに進む質量 2.0kgの台車Aと, 速さ 1.0m/s で左向きに進む質量 1.0kgの台車 B がある。速度の正の向きを右向きとする。台 車A,Bの運動量の和は【11】kg・m/s である。 台車 A,Bの衝突直後,図2のように, 台車Aが速さ 1.0m/sで右向きに進むとき,台車Bは 速さ 【12】m/s で右向きに進む。この衝突によって【13】Jの力学的エネルギーが失われ,台車A, Bの間の反発係数 (はね返り係数)は 【14】 である。 その後,台車Bは水平面の右側に固定されたばねではね返り, 台車Aと2回目の衝突をする。 その衝突後, 台車 A,Bはそれぞれ水平面の左側、右側に固定されたばねではね返り,3回目の 衝突をする。 3回目の衝突直後の台車 A,Bの運動量の和は【15】kg・m/s である。 ただし,台車 がばねではね返るとき, 力学的エネルギーは保存するものとする。 また, 台車 A, B が衝突する とき, 台車 A, Bは共にばねから離れているものとする。 000000 -00000 3回目: 2.49 3.0m/s 反発係数=0.50 1回目衡後A=10m/s 2周目 LAT = 1.0m/s A A=1.0×0.50 =0.50 衝突前 1回目の衝突直後 図 1 図2 GB= 1.0m/s B B 3.0 M(J 156- Icg 4 :3.0×0.5 =1.5 eft = 65 fal ~1.75 = 0.50×0.50 - 0₂21 P=0.25×2.0+0.75×10=0.fotagr =1.325 ばね 000 ばね 0000

回答募集中 回答数: 0
物理 高校生

これのsin cosの使い分けが意味わからないです。どういう時にsinでどういう時にcosなのか教えてください。また図のようになる理由が分かりません。

物にはた のときはいくらか ust 48 なった2物体の単振動図のように、ばね定 kのばねのつながった質量Mの平らな台がなめら な されている。 ばねの他端は壁に固定されており,台を 平に びたところで台を静かにはなしたところ、物体は台の上ですべることなく,台と一体 なって掲載した。 台と物体の間の静止摩擦係数をμ, 重力加速度の大きさをgとする。 この振動の周期を求めよ。 ) 水平面に対する台の速さの最大値を求めよ。 振動中にばねの伸びが」となった瞬間の、物体にはたらく摩擦力の大きさを求めよ。 振動中に小物体が台の上ですべらないためのdの最大値を求めよ。 台の上には質量mの物体が置 上にあり, 小物体 m M k 7000 台を水平に引っ張り, ばねが自然の長さからだけ させることができる。 49 初期位相がある単振動 なめらかな水平面上に 量mの小球を置いてばね定数kの軽いばねの一端 接続し, ばねの他端を壁に固定する。 ばねが自然の 長さのときの小球の位置を原点0 として、 図の右向 唇に軸をとる。 速度の正の向きは、x軸の正の向きとする。 時刻=0に、原点にある小球に初速度(v>0) を与えたところ、小球は単振動 を行った。 単振動の振幅 A をk.m.vo を用いて表せ。 2 A. のとき、小球の単振動の角振動数をωとして,時刻における小球の座標を tを用いて表せ。 3) 小球を一度静止させて x = A の位置まで移動し, 静かにはなすと小球は角振動数」 の単振動を行った。 小球をはなした時刻を t=0として、時刻における小球の座標, ASASSOT を 4 tを用いて表せ。 4 (3)のとき、小球が原点を通過するときの速さをVとする。 時刻t における小球の 速度をV,w, tを用いて表せ。 自然の長さ 0000000000- 10 10 単振動 8

回答募集中 回答数: 0
物理 高校生

大問2の方で、r <roより長方形を貫く全電流が0とあるのですが、なぜそうなるのかがわかりません。 教えていただけると助かります。よろしくお願いします。

【1】 <L813P12> 2010 長崎大学 2/25, 前期日程 医 教育工歯 水産業 環境科 次の各問いに答えよ。 試験日 問1 次の (7) から(エ)に適当な式または語句を入れよ。 AO 断面積 S, 長さ 巻き数Nのソレノイドがある。 ソレノイドに電流を流すと内部には, 中 心軸に平行で一様な磁場ができた。 この磁場の強さは,LL, N を用いると, である。 また, ソレノイドの内部の透磁率をμ とすると, ソレノイド内部の磁束密度B は, H, Mo を用 い ( となる。 ソレノイドに流れる電流Iが4時間に AI だけ増加したとすると, ソレノイドのひと巻きあた AI りに生じる誘導起電力の大きさは, S, I, N, を用いて, (ウ となる。 これを倍 N してソレノイド全体で生じる誘導起電力の大きさを表すとき、係数は れる。 導出過程を記入すること。 必要があれば,図を用いてもよい。 とよば 【2】 <L797P22> 2010 東京工業大学 3/12, 後期日程 工 (第2類) 工(第3類) 工(第4 類) 工(第5類) クラス (A) 図1に示すように、導線を半径r[m]の円形状に一様に密にN回巻いた, 長さ入[m]の円筒 形コイルが真空中にある。 なお, コイルの長さは, 半径に比べ十分に長いものとする。 真空の 透磁率を44 [N/A}]として, 以下の問いに答えよ。 番号 中心軸 氏名 得点 70000 00 00 00 00 00 図1 1 T (a) コイルに電流 [A]を流した。 このときのコイルの中心軸上における磁場の強さを [A/ml, コイルの中心軸から距離r[m] における磁場の強さをH,[A/m]とする。 ここで, 磁気量 1WB の 磁極を, 長方形ABCD の矢印の向きに沿って動かすことを考える。 このとき, IWb の磁極が 長方形ABCD 上を一周するあいだに磁気力によってなされた仕事の値[J]は, この長方形を 貫く全電流J[A]に等しいことが知られている。 すなわちW=Jとなる。 なお、図1に示すよう に, 長方形ABCD は,辺の長さが [m] およびr[m] であり、辺ABはコイルの中心軸上にある。 以上のことから,まず, <n, すなわち辺CDがコイルの内側にある場合について考え,H, Hの比を求めよ。 つぎに,,すなわち辺CDがコイルの外側にある場合について考 え, H を入, s, r,N, I のうち必要なものを用いて表せ。 (b) このとき、巻き数Nのコイルを貫く全磁束 [Wb]は, コイルの自己インダクタンス L[田に 比例してLI [Wb] となる。 Lを共 入Nのうち必要なものを用いて表せ。 なお、このコイ ルを貫く全磁束は, コイル一巻き分を貫く磁束のN倍であることに注意せよ。

回答募集中 回答数: 0
物理 高校生

(4)(5)について質問です (4) バネが縮んでから、伸びたばねによって押し返されるところを注目するのはなぜですか?(自分はバネに届く前とd2縮んだ場面について考えようとしていました。) なぜ運動方程式で解こうと思うのですか? エネルギーでは解けないのですか? (5... 続きを読む

〔8〕 2008 山形 RS 上には,質量Mの台が垂直面 QR に接して置かれていて、台の上面が水平面PQと同一平面 図のように、水平面PQ上に、大きさの無視できる質量mの小物体が置かれている. 水平面 置かれている. ばね 1, ばね2ともにばね定数はkとし, 質量は無視できるとする. また, 水平面 になっている. 水平面 PQ 上にはばね1が, 水平面 RS上にはばね2が, 一端を壁に固定されて と小物体,台の間の摩擦は無視し,重力加速度の大きさをgとする. vo 小物体をばね1の固定されていない端に接触させ,自然長からd, だけ縮めぞ静かに手を離し た。 ばねが自然長に戻ったところで、小物体はばね1から離れ,水平面 PQ 上を右向きに速さ で運動した. Q(1) vo をm, k, d を用いて表せ. その後,小物体は速さで台に乗り移り、同時に台も動きはじめた. 小物体が台上を時間Tの 間に,台に対して距離だけすべった後、 小物体と台は一体となって水平面 RS 上を右向きに一 定の速さ △ (2) T, V をそれぞれ vo, m, M, g, μの中から必要なものを用いて表せ. (3) を vo, m, M,g,μ を用いて表せ. 台は小物体を乗せたまま, 速さ V でばね2の固定されていない端にあたった.台があたる前の ばね2は自然長であった.その後, ばね2は自然長から最大d2だけ縮み,この間, 小物体は台上 をすべらなかった.ここでは、ばね2が自然長からd2だけ縮むまでの運動を考える. 小物体と台 の間の静止摩擦係数を μo とする. (4) ばね2が自然長からæ (0<x< d2) だけ縮んだとき, 小物体と台の間にはたらく静止摩擦力 の大きさを,m, M, k, æ を用いて表せ. (5) ばね2d2だけ縮むまでの間, 小物体が台上をすべらないためには, ばね1の縮みをい くら以下にしなければならないか.m, M, k, g, μo を用いて表せ. ばね 1 100000001 P 小物体と台の間の動摩擦係数をμとする. で運動した。 小物体 a R 台 2 70000000 S

回答募集中 回答数: 0