学年

教科

質問の種類

物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
物理 高校生

(2)においてばねの伸びがa-xになるのは何故ですか? a+bだと思ったのですが

出題パターン 鉛直方向への物体の単振動 XA a ばね定数のばねを鉛直に立て、床に固定する。 ば ねの上端に質量の薄い板Bを取りつけ, 板の上 質量の小球A を乗せると、 自然長からだけ縮 んで静止した。 このつりあいの位置を0として、 鉛直上向きに軸をとる。 また、 重力加速度の大きさ をgとする。 (1) ばねの痛み α を求めよ。 次に板B をつりあいの位置から、さらに (0) だけ下げて静かに放すと、 AとBは一体となり単振 動した。 小球Aと板Bの単振動の周期を求めよ。 (3) 位置における, 小球 Aの速さを求めよ。 0 eeeeeee 1-2xy (4) 小球Aが板Bから受ける垂直抗力N の関数として表せ。 代入して などと (5) 小球Aが板Bから離れないもの条件を求めよ。 解答のポイント! A. B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て N を求め, AがBから離れる 垂直抗力NO を用いる。 解法 (1)問題文の図で、力のつりあいより (a-x)だけ元に 戻ろする ポイント!! (M+m)g=ka M+mg ... 00 k 今後の式変形に、この人を フル活用することになる。 (2) 単振動の解法3ステップで解く。 X1 必ず向きを Ma +9 れない条件 STEP1 x 軸は与えられている。 STEP2 振動中心は、つりあいの (白)a 位置x=0の点。 折り返し点は速さ0で静かに放し そろえる α ka at Mg x = -b と, 振動中心に対して対 称の位置にあるx=bo X(中)0* mg 図9-8 自然長はx=αの点。 STEP3 9-8 のように、加速度をα. A,B間の垂直抗力をN ると, 図9-8 より A,Bの運動方程式は,

解決済み 回答数: 1
物理 高校生

問1〜5を解説していただけますか

選択授業 最終課題 <選択授業 最終課題について> ・以下の問いが最終課題です。 模範解答を作成し、この用紙ごと提出してください。 ・また評価は解答が合っているかだけでなく,これまでにもしくは新しく得た知識を活用できているか,知識を用いて思考できているか,導出過程を示す中で立式や立式に至るまでの表現が論理的 になされているかということも判断します。 ・提出期限は 3/6(水)です。 直接竹口まで提出しにきなさい。 締め切り厳守です。 締め切りを超過した場合受け付けませんのでよろしく。 <以下問題文> 次の文章を読んで,問 1~5に答えなさい。 問題の解答に必要な物理量, 物理定数があれば,それらを表す記号はすべて各自が定義し, 明示しなさい。 また, 問2以降は導出過程も示しなさい。 図1のように曲面ABとなめらかにつながった水平面 BC を持つ質量Mの台が, なめらかで水平な床の上の静止している。ここで,面 BC から高さんの曲面上の点Aから,質量mの小球を静かに すべらせた。小球と台の間に摩擦はないものとし,重力加速度の大きさをg とする。 図1 B C h A ( )組 ( ) 番 名前( 問 | 小球が曲面 AB にあるとき, 小球にはたらく力の名称と向きを右上の図に記入しなさい。 B C 問2 小球が曲面AB にあるとき, 小球と台からなる物体系の水平方向の運動量は保存される。 その理由を説明しなさい。 また, 小球が点Bにきたときの小球の床に対する速さをvとする。 このときの台の床に対する速さVを,m,M,v を用いて表しなさい。 問3速さvを,g,h, m, M を用いて表しなさい。 また,g=9.8m/s2, h=1.0×102cm, m=8.0×102g, M=9.0kg の場合について, v を有効数字2桁で求めなさい。 問4 区間 BC で, 小球はどのような運動をするか説明しなさい。 また,区間 BCを小球が運動しているとき、小球と台からなる物体系の重心は、水平方向にどのような運動をするか説明しなさい。 問5 上記の運動の後、小球は床からの高さがの点Cからとびだし, 床に落下する。 小球が床に落下したとき, 点Cと小球が水平方向にどれだけ離れているかとhを含む式で表しなさい。

未解決 回答数: 1
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
物理 高校生

(5)番なんですがN>=0は分かるのですがそれ以降が分かりません。わかりやすく教えて欲しいです。

31 鉛直方向への物体の単振動 ばね定数kのばねを鉛直に立て, 床に固定する。 (1 ねの上端に質量mの薄い板Bを取りつけ,板の上 00 に質量 M の小球 A を乗せると,自然長からだけ縮 B- んで静止した。このつりあいの位置をx=0 として, 鉛直上向きにx軸をとる。 また, 重力加速度の大きさ をg とする。 (1) ばねの縮みαを求めよ。 & DUH 次に板 B をつりあいの位置から、さらに6(>0) だけ下げて静かに放すと, AとBは一体となり単振 動した。 (2) 小球 A と板Bの単振動の周期を求めよ。 (3) 位置 x における,小球Aの速さを求めよ。 (4) 小球 A が板 B から受ける垂直抗力N をxの関数として表せ。 MOO AUSSE 出題パターン (5) 小球Aが板 B から離れないの条件を求めよ。 516100-2 .. a= 折り返し点は速さ0で静かに放し た x = - b と,振動中心に対して対 称の位置にあるx=bo 自然長はx=a の点。 102 漆原の物理 力学 解答のポイント! さぶ A,B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て, N を求めAがBから離れる 垂直抗力N=0を用いる。 magn 下向きにとるこ 解法 (1) 問題文の図で,力のつりあいより, (M+m)g=ka M+m ① k 単振動の解法3ステップで解く。 (1+0) S** STE | 1 x軸は与えられている。 DRS STEP2 振動中心は、つりあいの(自a 位置x=0の点。 g Baiepm x1 (中) 0x a+ 上 Lau T-e ポイント!! 今後の式変形に,この式を フル活用することになる。 必ず向きを そろえる AV Spreeeeee da at, af Mg mg 図9-8 2000円 A k(a-x) B IN 「縮み a-x (1+0)S STEP3 図9-8のように, 加速度をα, A,B間の垂直抗力をNとす ると,図9-8 より A,Bの運動方程式は, (1+n)S

解決済み 回答数: 1
1/5