学年

教科

質問の種類

物理 高校生

⚪︎11は有効数字を気にしていないのは何故ですか

などの は平均を表す。 」 は, その次に書く物理量の変化分を表す。 ①平均の加速度 x軸上を正の向きに進む物体が,ある時刻に点Pを速さ8m/sで 通過し, それから 3.5 s 後に点Qを15m/sの速さで通過した。 PQ 間の平均の加 速度の大きさは何m/s2 か。 回 平均の加速度 東向きに12m/sの速さで進んでいた物体が, その3s後に西向き に6m/sの速さになった。 物体の平均の加速度の向きと大きさを求めよ。 9 1等加速度直線運動 次の等加速度直線運動をする物体の加速度の大きさは, それぞ れ何m/s2 か。 (1) 静止していた物体が, 動き出してから 5.0s後に速さが20m/sになった。 (2)静止していた物体が動き出してから 4.0s間に12m進んだ。 (3)静止していた物体が動き出してから8.0m進んだところで速さが 4.0m/s になった。 10 ①4等加速度直線運動 一直線上を3.0m/sの速さで動いている物体が,一定の加速度 0.80m/s' で加速した。 加速し始めてから5.0s 後の速さは何m/sか。 [10] 15 等加速度直線運動 一直線上を2.0m/sの速さで動いている物体が,一定の加速度 4.0m/sで加速した。 加速し始めた位置から12m進むのに要する時間は何sか。 10 ③186m/2 陰 1m/s は,ヒトの歩 例題 1 直線運動 右の2つのグ A. B の運動の 刻を横軸にそれ (1) Aは時刻 2 通過する。 そ また 時刻 よ。 グラフ (2) Bはどの (3)Bの運動 [s] とする。 16等加速度直線運動 一直線上を10m/sの速さで走っている車が一定の加速度で加 速し,25m 進んだところで15m/sの速さになった。 加速度の大きさは何m/s2 か。 10 ① 等加速度直線運動のグラフ x軸上を,右のひtグラフで表 されるような運動をする物体がある。 (1) 物体の加速度の大きさは何m/s2 か。 v [m/s] 4.0 2.0 (2) 時刻t=0〔s〕に位置x=0[m] を通過したとすると, 時刻 t=5.0[s] における位置は何mか。 -t(s) O 5.0 アドバイス 速度の ① 変位,速度, 加速度 25.0m/s ③18km/h 5.0m/s ④AからBの向きに 1.8m/s 南東の向きに1.4m/s' ⑤成分:1.7m/sy成分:1.0m/s 60.4m/s,2.0m/s ③ 5m/s 25m/s 96.0.9.6m10 (1) 2m/s (2)8m 75.0m/s 112m/s2 12 西向きに6m/s2 (1)4.0 m/s² (2) 1.5 m/s² (3) 1.0 m/s² 7.0 m/s 2.0s 2.5 m/s² 17(1) 0.40 m/s² (2) 15 m 問題 未知・ 等加速 ・初め 正の v, c の向 12 第Ⅰ部 様々な運動

解決済み 回答数: 1
物理 高校生

(3)はどうして赤い字の考え方だとダメなんですか?

Ⅰ 次の文章の空欄にあてはまる数式, 図, または文章を解答群の中から選び, マーク 解答用紙の所定の場所にマークしなさい。(34点) y 0 10 m x 図1 水平方向にx軸,鉛直上向きに軸をとる。このxy面内を,大きさが無視できる [m] r 小球が運動する。 小球の質量をm[kg] とし,重力加速度の大きさをg[m/s] とする。 ひもの一端が図1の原点0に固定されていて, ひもにつながった小球が,原点0か 一定の距離 [m] を保って円運動をしている。 ひもに太さや重さはなく,空気抵抗 はないものとする。原点からみた小球の位置の方向と鉛直下向きの方向のなす角 を 0 [rad] とする。小球の速さは9によって変化し,(0) [m/s] とおく。特に, 0 = 0 における小球の速さ(0) をCMと書くことにする。小球は0の増加する方向に運動 している。 力学的エネルギー保存の法則を使うと, (1) という関係が成り立つ。 小球には重力と, ひもから受ける張力 T がはたらいている。 それらの合力のうち、 ひもに沿った方向の成分は, 向心力でなければならない。 向心力はm, v(0)に より与えられるが,その関係式は円運動が等速でなくても成り立つ。この事実を使う と、張力はT= (2) [N] と表される。 ひもがたるまずに円運動を続けるには,

解決済み 回答数: 1
物理 高校生

(2)なんですが、どうしてV0が0になるのか教えて欲しいです。

れでよくでる 図1のように、 東日本地域で記録タイマーを用いて重力加速度の大きさを測 定する実験を行った。記録タイマーをスタンドに固定しておき、記録タイマー に記録テープをセットした。 記録テープの一端にはおもりが取り付けてある。 記録タイマーは,打点が1秒あたり50回記録されるようになっている。 手で 記録テープを持って鉛直に垂らした後、記録タイマーのスイッチを入れてか ら、記録テープから手を放し落下させた。おもりが落下し始めた時刻を0とし おもりの持つ初速をDとする。 記録テープには図2のように打点が記録され 記録テープを5打点ごとに切り取り、記録テープの短い順に, A, B, C, D, E, F. ・・・・とする。 落下させた直後では記録テープAの打点が重なるので、隣り 合う打点がはっきりと区別できる打点(記録テープBの左端) をはじめの打点 として, 方眼紙に記録テープの短い順(Aは除く) に隙間が空かないように貼 り付けて図3のようなグラフを作成した。 図3の縦軸は5cm間隔で目盛が振っ てあり、横軸は時間を示し、 図2の記録テープBの左端の打点の時刻をもと して,原点と一致させてある。 また, 図3の描かれている直線は各記録テー プの端の中点をつなぐように引いた直線である。 記録 タイマー 記録 テーブ 正 図1 A B C D 5cm 40.0~ 30.0- 24.9 図2 20.0- 10.00- D .. E 805a 2013 E 時間 〔S〕

解決済み 回答数: 1
物理 高校生

(3)のどうしてmが2mになるんじゃなくてKが2kになるのか分かりません。普通に考えて重さ2倍にならないからkが2倍ですか?? あと、(3)のx=a/2のときのtなんですが、私の解き方のどこがダメなのか教えて欲しいです🙇🏻‍♀️答えが合わないんです😭3枚目です。 よろしくお... 続きを読む

必解 52. 2本のばねによる単振動〉 A 00000 P 図のように、なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A,Bとばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。時刻 t=0において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 任意の時刻における物体Pの位置xおよび速度vを,等速円運動の角速度を用いて 表せ。 (2) 任意の時刻において物体Pが位置xにあるときの加速度αを, ωとxを用いて表せ。 また, 2つのばねAとBから受ける力Fを, kとxを用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点Oを通過するまでの時間 to と, 初めて x=. 1 =1aを通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, wやTを用いないこと。 (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。このとき座標軸との交点を, a, k および を用いて表せ。また,物 [香川大 改 体Pが時間とともに図上をたどる向きを矢印で表せ。

解決済み 回答数: 1
物理 高校生

(2)で、過程IIの内部エネルギーの変化を答える問題で、自分の回答と教科書の解答が合いません。教科書には解説が載っていないのでどこが間違っているかわかりません。どなたか間違っているところを教えてください。

4 気体の状態変化 熱効率 (p.124~136) 円筒容器にピストンで単原子分子理想気体を封じ, 容器内外の圧力を1.0×10 Pa, 気体の温度を3.0×102K, 体積を 2.0 × 103m²とした。 このときの気体の状態をA として,次の手順で気体の状態を変化させた。 過程 I ピストンを固定したまま気体に熱量を与えたところ,気体の圧力は 01×0.1 2.2×105 Paになった状態 過程Ⅱ 次に,容器を断熱材で囲み、熱の出入りがないようにしてピストンをゆっ くりと操作したところ,気体の圧力は1.0×105 Paにもどり,体積は 3.2×10-3m²になった(状態C)。 C 過程Ⅲ 断熱材を外し、状態Cで気体を放置したところ,気体はゆっくりと収 縮し,状態Aにもどった。 (1)過程Ⅰ→Ⅱ→Ⅲの変化を、横軸に体積V,縦軸に圧力をとったグラフに示せ。 なお,グラフには変化の向きを示す矢印を入れ,状態A~Cでの横軸と縦軸 の値を明記せよ。 代 (2)各過程での気体の内部エネルギーの変化 4U [J] 40[J], 40 m [J] を求めよ。 (3)各過程で気体がされた仕事 W [J], Wn[J], Wm[J] を求めよ。 (4)各過程で気体が外部から吸収した熱量Q [J], Qm [J], Qm [J] を求めよ。 (5)この1サイクルにおける熱効率を有効数字2桁で求めよ。

解決済み 回答数: 1
1/17