学年

教科

質問の種類

物理 高校生

重要問題集をやっていてふと気になったので質問します。運動量保存則において速度はもともとベクトルですからですから±も含んでいると認識しています。しかし、写真の問題の解答では元の運動量保存則の文字の前に➖がついていますが、これはどうしてですか?

36. 〈水平面上での2物体の衝突〉 なめらかな水平面上に、同質量 m[kg] の2個の小物体AとB がある。 図に示すように、静止しているBにAを左側から速さ V[m/s] で衝突させたところ, 衝突後のAの速度ベクトルは,大 きさは VA [m/s]で,衝突前のAの速度ベクトルとなす角は [rad] であり,Bの速度ベクトルは, 大きさは Ve〔m/s] で, 衝突前のAの速度ベクトルと なす角はβ〔rad] であった。 B A V AVA & B B VB (1)まず,衝突前のAの運動方向と平行な, 運動量の成分について考えよう。衝突前と衝突後 で, 小物体AとBの運動量成分の和が等しいことを表す式を書け。 (2)次に,衝突前のAの運動方向と垂直な, 運動量の成分について考えよう。衝突前と衝突後 で,小物体AとBの運動量成分の和が等しいことを表す式を書け。 (3) VA と VB をそれぞれ, V, α, β を用いて表せ。 2 (4) 特に, α+B=7 であった場合, 4E 〔J〕 を求めよ。 ただし, 衝突前の小物体AとBの力 学的エネルギーの和を E 〔J〕, 衝突後の小物体AとBの力学的エネルギーの和をE' [J] と したとき 4E=E'-E である。 [15 名古屋工大]

未解決 回答数: 1
物理 高校生

写真の赤線部では交流回路でのコイル、コンデンサーはそれぞれ (電圧の実効値)=(リアクタンス)×(電流の実効値)という式が成り立つと書かれていますが、この電流電圧の実効値は抵抗を流れる電流と同じ(最大電圧(流)の1/√2倍した)数値ですか?最大電圧(流)を1/√2倍したもの... 続きを読む

■コンデンサーのリアクタンス 式(27)より、Io=ωCV であるからwC=- 1 とおいて Vo=X。 と表 Xc すと、電流の最大値 Ⅰ と電圧の最大値 V。 との間には, オームの法則と類 似の関係が成り立っており, Xc は電気抵抗に相当する物理量となってい -p.250 ることがわかる。 このXc をコンデンサーのリアクタンス (容量リアクタ ンス)といい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コンデンサーのリアクタンス 1 (28) XcwC 式(24)より、Io= Xc [Ω] コンデンサーのリアクタンス w [rad/s] 角周波数 C〔F〕 電気容量 コンデンサーでは, 角周波数 ωや電気容量Cが大きいほどリアクタンス 小さくなり, 電流は流れやすくなる。 また, 電圧の実効値 Ve と電流の 効値との間にも同様に,Ve=Xce という関係が成り立つ。 コイルのリアクタンス Vo であるから,wL=Xとおいて Vo=X。 と表す WL と、電流の最大値と電圧の最大値 V。 との間には,オームの法則と類似 の関係が成り立っており, XL は電気抵抗に相当する物理量となっている reactance ことがわかる。 このXL をコイルのリアクタンス (誘導リアクタンス)と いい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コイルのリアクタンス XL=wL (25) XL,[Ω] FELL FAC コイルのリアクタンス w [rad/s] 角周波数 hata To 4 10 L [H] 自己インダクタンス スが大きくなり, 電流は流れにくくなる。 また, 電圧の実効値 V と電 実効値との間にも同様に, Ve = Xile という関係が成り立つ。 コイルでは, 角周波数や自己インダクタンスLが大きいほどリアクタ

未解決 回答数: 1
物理 高校生

(シ)で直列(問題の図4)と並列(問題の図5)の時のコンデンサーに蓄えるエネルギーを比較しているのですが(シ)の解説で0<ω^2LC<2の時とあるのですがどうしてこの範囲になるのか分かりません。 ω^2LCが2より大きい値を取った時は考えないのでしょうか? 出典:難問題の... 続きを読む

Chapter 1 電磁気 Section 4 交流と荷電粒子の運動 192 例題 35 交流回路② 以下の空欄(ア)~(シ)にあてはまる式または語句を解答用紙の該当す る欄に記入せよ。 また, 空欄(a), (b)にあてはまる答えを図3から選び、 その番号を解答用紙の該当する欄に記入せよ。 る。したがって、同じ電圧振幅 V を発生する交流電源に接続するとき, コンデンサーが蓄えるエネルギーの最大値は直列接続の場合( [J] であり, 並列接続の場合(ク) 〔J〕 である。 また, コイルが蓄え るエネルギーの最大値は、 直列接続の場合は) [J] であり,並列 接続の場合は) [J] である。 並列接続の場合, コンデンサーが蓄 えるエネルギーの最大値とコイルが蓄えるエネルギーの最大値が等 しくなるのはω=)〔rad/s〕のときである。 コンデンサーから放射される電磁波の強さは, コンデンサーが蓄積 するエネルギーに比例するとしよう。 交流電圧源の電圧振幅 Vo を一 として、交流電圧の角振動数を変えて電磁波の放射エネルギーを大 きくしようとするとき, コイルとコンデンサーの直列接続と並列接続 とを比較するとシン) 接続のほうがより強く電磁波を放射すると考 えられる。 図1に示すように, 電気容量がC〔F〕] のコンデンサーを角振動数ω [ rad/s ] の交流電圧を発生する電圧源に接続する。 回路には時間を [s] として,図2に示すようなIo cos wt 〔A〕 の交流電流が図1の矢印の 向きを正として流れる。 t=0s でコンデンサーの電圧は0Vで,コンテ ンサーの蓄える電荷はOCであった。 交流電流が流れることによって 時刻に図1のコンデンサー上側の極板が蓄える電荷は) [C]で あり、コンデンサー両端の電圧は() [V] である。この交流電圧 はコンデンサーの極板間に,時間的に変動する電界を作る。 変動する電界付近には, 変動する磁界が発生する。 図2の0<t< / 200の間では,コンデンサーの極板間の電界の向きは図3の(a) の向きである。この向きの電界の時間変化率は0<t < π/20 の間で正 であり、この間に変動する電界は、コンデンサーの上側極板に流れ込 む電流が,そのままコンデンサーの極板間を流れるものと考えた場合 に発生する磁界と,同じ向きに磁界を発生する。 したがって,0<t <π/20の間にコンデンサー周囲に発生する磁界は図3(b)の向 きである。 この磁界の周りには、変動する電界がさらに発生する。 こ うして、コンデンサーの周りには、次々と変動する磁界と電界が発生 し、周りの空間に伝えられる。 これが電磁波である。 光の速さをc[m/ s] とすると,このコンデンサーから放射された電磁波の波長は(ウ) [m〕 と計算される。 コンデンサーから電磁波を発生させるとき, コンデンサーとコイル を接続した回路がよく用いられる。 電気容量C [F] のコンデンサーと 自己インダクタンスL [H] のコイルを,図4のように直列接続する場 合と,図5のように並列接続する場合を比較しよう。図4の直列回路 I cos at 〔A〕 の交流電流が流れるとき, 電圧源が発生する電圧の振 幅は国〔V〕である。 一方, 図5の並列回路のコイルとコンデンサー Vosin at 〔V〕 の電圧を加える場合には, コンデンサーに流れる電流 の振幅は(オ) [A], コイルに流れる電流の振幅はカ) [A] であ 図 1 考え方の キホン 電流 415 図4 電流 [A] Io 0 -10 2ω ② 3 w2w 図2 図5 2x 時間 t(s) コンデンサー -0 電流 図3 (同志社大) 交流で電圧や電流を求める場合、 普通は,振幅(最大値) と位相を 別々に処理すればよい。 振幅はオームの法則から求め、位相はπ/2 だけ進むとか遅れるとかを判断し, cot+π/2とかwt-π/2とかとすればよい。ただ この問題では、設問の順序からみて、 微分や積分を用いて解答するのが、出題者 の意図であろう。 1-4 交流と荷電粒子の運動 電磁気 193

解決済み 回答数: 1